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A suite of simple metrics that can be used to analyse three-dimensional data sets is
presented. We show how these metrics can be applied to raster-based, ecological mosaics
sampled over uniform time intervals, such as might be obtained from a series of
photographs or from repeated spatial sampling in the field. In these analyses, the concept
of a 2D landscape “patch” is replaced by a 3D space–time “blob”. The structure of a dataset
can be analysed via the characterisation of blobs, using a number of simple composition and
configuration metrics. The use of different metrics, including modified versions of some
common landscape metrics such as contagion, that describe the distribution of blobs in
space and time, is demonstrated using both model and empirical data. With the increasing
availability of spatiotemporal data sets in ecology, such three-dimensional metrics may be
indispensable tools for the detection and characterization of landscape change in the
context of human and naturally caused disturbances.
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1. Introduction

With the advent of increasingly sophisticated grid-based
ecological monitoring techniques, combined with the growing
use of spatiotemporal models, ecologists now have at their
disposal considerable amounts of data describing the evolu-
tion of ecological variables in both space and time. In
landscape ecology and earth systems science, for example,
the availability of several decades of remote sensing images
means that the study of landscape change over time is a
common practice (Kienast et al., 2007). Similarly, spatially
explicit ecosystem models generate reams of data describing
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the evolution of variables on simulated landscapes (see
examples in Bascompte and Solé, 1998). At the ecosystem
scale, modern sampling programs often involve the auto-
mated measurement of specific variables at several spatial
locations at fixed intervals over a period of time (Baldocchi
et al., 2001; Collins et al., 2006). The availability of such data,
combined with appropriate quantitative methods, should
make it possible to study the inherently spatiotemporal
nature of ecological dynamics.

Here,wepresent somesimplemetrics that can be applied to
the characterisation of the complex spatiotemporal dynamics
of ecological mosaics (categorical maps). These metrics apply
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to 3-dimensional datasets (e.g., a time series of spatial images),
allowing for the characterisation of volumetric entities (having
2 spatial dimensions and 1 temporal dimension) that we call
“blobs”. The behaviour of these different metrics is demon-
strated for both model and empirical data. We propose that
blob analysis via 3D metrics permits an integrated method of
characterising the spatiotemporal nature of ecological
dynamics from the local to landscape scale.
2. Spatiotemporal analysis in ecology

Effective monitoring and characterisation of ecological
dynamics necessitates a truly spatiotemporal approach.
Currentmethods of analysis in ecology are still largely centred
on spatial or temporal analysis, but few address both space
and time concurrently (Fortin and Dale, 2005; Bolliger et al.,
2007). For example, indices of spatial heterogeneity do not
include temporal variation (Gustafson, 1998; Fortin and Dale,
2005) and methods of time series analysis typically do not
include a spatial component. Even when both spatial and
temporal information is available, via remote sensing images
for example, the analysis is typically done in space, and then
repeated for images taken at different moments in time,
resulting in a time series showing the temporal evolution of a
spatial indicator. This approach is often taken to assess land
cover change over time via the analysis of a series of remote
sensing images (see for example, Hayes et al., 2002, Dunn
et al., 1991). Similarly, Tobin (2004) studied space–time
correlation in population data by calculating spatial auto-
correlation in the data and then studying how this spatial
correlation varied in time. Other methods involve the analysis
of the temporal variation of specific points in space, and then
compare this variation for different study sites (Liebhold et al.,
2004). For example, most time series analyses of species
abundances for a community are the result of a two-step
process. An estimate of species abundances is first obtained
across space (e.g., using central tendency estimators such as
the arithmetic mean), and then the trajectory in time is
characterized. It is well recognized in landscape ecology that
such a spatial ‘averaging’ processmay generate scale artefacts
(Jelinski andWu, 1996; Rahbek, 2005). For this reason, there is a
need for truly spatiotemporal methods of analysis that do not
‘collapse’ spatial or temporal dimensions.

While some recent statistical methods do allow for the
detection of space–time patterns and clustering, they typically
apply to irregularly sampled point data (Gatrell et al., 1996;
Rogerson, 2006) or involve the analysis of correlations between
time series recorded at different spatial locations (Bjornstad
et al., 1999). This method allows for a study of spatial
autocorrelation of variation through time. It has been used
to detect spatial synchrony in population dynamics and can
also characterise more complex dynamics such as spiral
waves when time-lagged spatial correlation is used (Liebhold
et al., 2004). A few truly spatiotemporal methods of data
analysis exist. For example, the join count has been used to
quantify pairs of observations in time and space for transect
data (1 spatial dimension) (Fortin and Dale, 2005). Wilson and
Keeling (2000) present a method of reducing spatiotemporal
data from grid-based models to lower dimensional vectors
Please cite this article as: Parrott, L., et al., Three-dimensional
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that can be used to characterize the structure of patterns
observed. Recent work in geo-visualisation addresses the
problem of describing and characterising higher dimensional
space–time data, and methods such as the three-dimensional
Fourier transform have recently been applied to detect space–
time periodicities (Dykes and Mountain, 2003; Edsall et al.,
2000). The variogram and covariance matrix, typically used to
measure roughness in spatial data, may also be applied in
three dimensions (Isaaks and Srivastana, 1989; Porcua et al.,
2007). Lastly, Griffith's space–time index (Griffith, 1981; Fortin
and Dale, 2005) extends the notion of spatial autocorrelation
to a temporal dimension using weights that include space and
time in the calculation of distances between observations.

While the above methods are typically applied to contin-
uous valued variables, many are flexible enough to incorpo-
rate both continuous and categorical variables, as well as
regular or irregular grids. However, these methods are
typically based on linear mathematical models, assuming
stationarity in time. Such models may fail to capture the
complex spatiotemporal dynamics of ecological data. Sec-
ondly, thesemethods generally provide information about the
scale or frequency of ecological processes (e.g., space–time
variograms and correlograms), but not on the ‘complexity’ or
‘heterogeneity’ of the process per se. They can be considered
as complementary to the metrics presented here, and to the
collection of metrics developed by landscape ecologists to
characterize the patterns present in ecological mosaics.

An ecological mosaic is a raster-based grid of categorical
values describing the distribution of a specific ecological
variable in space. The idea of ecological mosaics was first
presented by Pielou (1969), who proposed a number of effective
ways of analysing spatially-structured categorical data. Spatial
mosaics are at the basis of most analyses in landscape ecology,
which typically apply to raster data from remote sensing
(Forman, 1995). Landscape ecologists have developed an entire
suite of landscape metrics, designed to describe the composi-
tion and configuration of “patches” on a landscape, where a
patch is defined as a contiguous region of cells (or pixels)
containing the same categorical value (Gustafson, 1998; Turner
et al., 2001). Patchesmay formpart of amosaic of patch types, or
else a single patch type on a backgroundmatrixmay be studied.
In landscape ecology, researchers describe and characterise
landscape changevia the analysis of howkey landscapemetrics
change from one moment in time to another (e.g., via the
analysis of a historical series of satellite images or aerial
photographs). The study of ecological mosaics has recently
come to the forefront in other areas of ecology as well, with
Murphy and Lovett-Doust (2004) calling for the use of mosaics
for sampling in ecology as a means of better understanding
metapopulation dynamics.

Here we present a suite of simple metrics that can be used
to characterize the spatiotemporal dynamics of n-phase
spatial mosaics. The metrics explicitly consider a temporal
dimension in the analysis of spatial data. They are all
extensions of common landscape metrics and information-
based measures such as diversity, contagion and fractal
dimension. While our examples are limited to specific
ecological situations, these metrics can easily be applied in
any field where three-dimensional data exist (e.g., measure-
ments of a system involving at least 3 variables).
metrics for the analysis of spatiotemporal data in ecology,

http://dx.doi.org/10.1016/j.ecoinf.2008.07.001


3E C O L O G I C A L I N F O R M A T I C S X X ( 2 0 0 8 ) X X X – X X X

ARTICLE IN PRESS
3. Methods

Our analyses are applied to space–time cubes3 of data, having
two spatial dimensions (x,y) and a third time (t) dimension.
Thus, a space–time cube is simply a stack of successive spatial
“images” in raster format that capture thestate ofa landscapeor
other spatial environment, sampled at uniform time intervals.
The variable measured will typically be semi-qualitative or
quantitative, and be divided into categories. Each spatial image
is a grid of cells (also called ‘pixels’), each of which has an
associated value, corresponding to a type or category (Fig. 1a).
Whenweadd the temporal dimension, a spatial pixel becomesa
3-dimensional ‘voxel’ having two spatial dimensions and a
temporal dimension, the depth of which is equal to the
sampling interval in time (Fig. 1b).

In the space–time cube, persistent entities in thedataset take
on3-dimensional formscomposedof voxels that are adjacent in
space–time. We call these 3-dimensional forms “blobs” and all
of our analyses treat the characteristics of blobs in the space–
time cube (Fig. 1c). For example, a spatial patch (defined as a
contiguous area of pixels) whose area remains constant over
time will form a blob in space–time that has a columnar shape,
whereas a patch that changes shape over time will form a blob
having amuchmore complex form in space–time. Thismanner
of representing space–time is similar to that used by geogra-
phers working with spatiotemporal data in GIS software
(Peuquet, 2001) although most inquiries in time geography
deal with trajectories (lines) in a space–time cube and not
volumes composed of voxels. Exceptions include Forer (1998)
who coined the term ‘taxel’ to describe a 3-dimensional entity in
space–time in the context of studying the evolution of human
constructs in urban landscapes and Morris et al. (2000) who
developed a 3Dvisualisation system forGIS inwhich 2-D spatial
entities have a third temporal dimension.

3.1. Blob analysis: 3D composition metrics

3.1.1. Space–time density, number of blobs, distribution
frequency and blob shape complexity
As for patches on a landscape, we can specify categories
corresponding to different blob types. In a space–time cube of
dimensionsNx,Ny,Nt voxels, each voxel thus belongs to one of b
blob types, and adjacent voxels of the same type form a single
blob. We consider a distinct blob to be a contiguous volume of
identical voxels, where adjacency can be defined according to a
26-cell “Moore” neighbourhood or a 6-voxel “vonNeuman”
neighbourhood. In the former, two voxels sharing a face, an
edge or a point are considered to be neighbours, in the latter,
only voxels sharing faces are considered to be neighbours. The
volume of a blob is the sum of the number of voxels it occupies.
Its surface area is defined as the number of faces not shared by
adjacent voxels of the same blob type. Similarly, we can define
the bounding box as being the smallest hexahedron that can
contain the blob.
3 The word “cube” is used here for simplicity although the
space-time cubes are, in fact, hexahedrons since the 6 faces are
not necessarily square (i.e., Nx≠Ny≠Nt).

Please cite this article as: Parrott, L., et al., Three-dimensional
Ecological Informatics (2008), doi:10.1016/j.ecoinf.2008.07.001
Traditional compositionmetrics for landscapepatches (area,
perimeter, deviation from the mean, etc.) may thus be
calculated for blobs. Composition metrics provide information
about the constitution of the space–time cube. For each blob, a
number of characteristics suchas its type, volume, surface area,
bounding box, centre of mass, etc. can be calculated. Similarly,
we can also calculate a number of statistics describing the
collection of blobs in the space–time cube, including: average
and standard deviations of blob sizes (volumes), the frequency
distribution of blob sizes (volumes), the space–time density
(number of voxels occupied by a blob type divided by the total
volume of the space–time cube), total edge (surface), etc.
Shannon diversity metrics for the b blob types (weighted by
blob volumes) can also be used to describe the composition of a
space–time cube. A dataset with more complicated spatiotem-
poral dynamics may have more blob types, a higher standard
deviation of blob sizes, a higher ratio of surface area to volume
(i.e., complex blob shapes) or an uneven frequency distribution
of blob sizes, for example.

To describe the complexity of blob shapes we use the ratio
of blob volume to bounding box volume (we call this ratio the
'shape complexity’). The value equals 1 for simple rectangular
objects and tends to 0 for objects that have a volume much
smaller than the volume of their bounding box. This ratio
gives a rough measure of the form of a blob, with more
complex shapes tending to have lower values. We note that
the ratio is much too simplistic to be a satisfactory measure of
blob shape complexity, since it is subject to many exceptions
(e.g., a spatiotemporal line going diagonally from one corner of
a rectangle to another will have a ratio close to zero). The ratio
does, however, give a rough idea of the volume occupied by a
blob and thus of it's respective form.

3.1.2. Fractal dimension
The fractal dimension is a measure commonly used to describe
the degree towhich an object occupies its topological volume. It
is commonly used in landscape ecology to describe the
complexity of landscape patterns (Milne, 1991) and has been
used insoil scienceandother fields todescribe thecomplexityof
3-dimensional objects such as soil pore structure (Perret et al.,
2003). An object's fractal dimension approaches its topological
dimension (e.g. 2 for a surface or 3 for a volume) for very smooth
objects. Irregular objects tend to have fractional fractal dimen-
sions, indicating that they have complex, possibly self-similar,
shapes. There aremanyways to estimate the fractal dimension
of an object. Here, we use the box-counting algorithm (Peitgen
et al., 1992), which is one of the most common methods. The
algorithm counts the number (N) of 3 dimensional boxes of
length (L) needed to cover the non-zero elements of the data
cube. For a fractal object, N scales as a function of Ld, where d is
the fractal dimension.

3.2. Blob analysis: 3D configuration metrics

Similar to 2D landscape configurationmetrics, 3D configuration
metrics describe how the blobs are distributed in space–time,
taking into consideration adjacencies between cells of different
blob types. These metrics can be used to compare the observed
spatiotemporal distributions to randompatterns. As is done for
spatial patterns, a frequency table of blob adjacencies can serve
metrics for the analysis of spatiotemporal data in ecology,
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Fig. 1 –Format of spatiotemporal data used for the 3D metrics presented in this article: (a) An example ecological mosaic
composed of categorical raster data; shades of gray correspond to different categories or patch types; (b) A pixel in raster data
becomes a 3-D voxel in space–time having dimensions equal to the spatial (Δx, Δy) and temporal (Δt) sampling resolutions.
Neighbouring voxels are used to calculate adjacencies for metrics such as contagion; the von Neumann neighbourhood is
shown here; (c) A stack of spatial mosaics taken at successive points in time can be used to generate a 3-dimensional data
matrix in which spatial patches take on an additional temporal dimension to become “blobs” composed of 3D voxels.
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to describe the complexity of the space–time pattern. More
complex metrics may build upon the adjacency table. Here, we
present and test two configuration metrics: contagion and
spatiotemporal complexity.

3.2.1. Contagion
Contagion (O’Neill et al., 1988; Li and Reynolds, 1993; Ritters
et al., 1996) is a measure that was originally developed for the
analysis of landscape patches and is typically used tomeasure
the dispersion or “clumpiness” of different patch types.
Contagion compares the expected frequency with which two
patch types should be adjacent for a random case with the
actual frequency observed on a landscape. Here, we extend Li
and Reynolds's (Li and Reynolds, 1993) formulas for contagion
to three dimensions in order to measure the space–time
dispersion of blob types. The metric is based on a calculation
of the probability of finding a voxel of blob type i next to a
voxel of blob type j. Note that the calculation is based on voxel
(not blob) adjacencies. The value of contagion ranges from 0 to
1. Space–time cubes full of large, contiguous blobs give rise to
high values of contagion, whereas a completely random mix
Please cite this article as: Parrott, L., et al., Three-dimensional
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of cell types gives rise to 0 contagion. Thus, high contagion
corresponds to a fairly contiguous landscape that does not
change substantially in time. The calculation for b blob types
is as follows:

RC ¼ 1� EE=EEmax

where:

RC contagion, as proposed by Li and Reynolds (1993);
EEmax b ln(b)

EE �Pb

i¼1

Pb

j¼1
pijln pij

� �

pij nij /ni
nij number of adjacencies between voxels of blob type j

and voxels of blob type i
ni number of voxels of type i

3.2.2. Spatiotemporal complexity (STC)
Spatiotemporal complexity measures how one type of blob
occupies the 3-dimensional space, i.e., how the spatiotemporal
metrics for the analysis of spatiotemporal data in ecology,
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Fig. 2 –Examples of the different model data sets for selected moments in time. The analysed blob type is shown in white and
the background matrix is black. (a) Random; (b) Random30; (c) Column; (d) Spread; (e) Lotka-Volterra; (f) Host–Parasite.
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landscape is structured.Thismeasurewas developed specifically
for the analysis of space–time data. It was first introduced and
demonstrated using data from an individual-based model in
Parrott (2005). The metric applies only to 2-phase mosaics (i.e.,
space–time cubeswith 2 blob types, or one type in a background
matrix). More varied data must, therefore, be binarized before
analysis. This can be done by selecting themean (or some other
pertinent) value and setting all values below the mean to blob
type i and all that are above to blob type j. Alternatively, the
analysis can be done for oneparticular blob type, considering all
others to be the background matrix.

Spatiotemporal complexity is calculated by looking at the
contents of successively offset 3D windows (of dimension
n×n×n, where n is an arbitrary length that is considerably
smaller than the data cube dimensions) in the space–time
cube. For each possible placement of the 3D window in the
cube the number of voxels occupied by blob type i is counted.
Themeasure is based on observed frequencies of the different
possible occupation levels, Mk∈ {0…n3}:

STC ¼
�Pn3

i¼0
pklnpk

ln n3 þ 1
� � 0 b STC b 1

where:

STC spatiotemporal complexity
pk relative frequency of Mk

Division by ln(n3+1) serves to normalise the measure. The
value of STC ranges from 0 for the completely ordered case
(equivalent to a space–time cube of solid zeros or ones) to 1 for
themost complex case (equivalent to observing all occupation
levels with equal frequency; i.e., a space–time cube containing
both sparse and clumpy regions).
Fig. 3 –The space–time cube of Lotka-Volterra data
(dimensions 100×100×1000 voxels) showing the stack of
successive snapshots of the presence of the prey species on
the landscape. Voxels containing prey are shown in grey; the
background matrix is black.
4. Data sets

To explore the behaviour of the different 3Dmetrics, a series of
analyses was performed on six model data sets and one
empirical data set. For the purposes of this demonstration, we
treat only 2-phase spatial mosaics (2 blob types; equivalent to
one type in a background matrix), although for some of the
studied data sets, we could have included more categories.

Each modelled data set consists of a time series of 1000
successive images of approximately 100×100 cells. The first two
sets aresimplycubesofuniformlydistributedrandomnumbers.
In the first set (Random), we assign all values b0.5 to blob type 1
and all values ≥0.5 to blob type 2. In the second set (Random30),
values b0.3 are set to blob type 1 and all other values are blob
type 2. The third set (Column) contains a single square column
composed of blob type 1 voxels in the centre of the data cube.
The fourth set (Spread) contains an inverted pyramid in the data
cube, imitating the successive spread of a square patch of blob
type 1 voxels. The fifth set (Lotka-Volterra) was generated using
Wilson's (2000) spatial reaction–diffusion model of Lotka-
Volterra dynamics. Voxels containing prey are assigned blob
type 1 and all other voxels are assigned blob type 2. Lastly, the
final set (Host–Parasite) contains spatiotemporal data from
Please cite this article as: Parrott, L., et al., Three-dimensional
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Hassell et al.'s host–parasitemodel (Hassell et al., 1991),which is
known to generate a form of spatiotemporal chaos charac-
terised by spiralling waves under some parameter values (here
we used μN=μP=0.8). Voxels containing the host are set to blob
type 1 and all other voxels are set to blob type 2. Fig. 2 shows
sample images (2D slices) for each of the model data sets. To
provide the reader with an idea of what this quantity of data
looks like in three dimensions, a visualisation of the entire
space–time cube of the Lotka-Volterra data is provided in Fig. 3.

The empirical data set consists of a series of 100 photographs
that capture the understory light variability in a Quebec
hardwood forest during the spring budburst. The photographs
were taken at the exact same location at 30-minute intervals
over a period of 5 days from 8h00 to 17h30. The photographs
were taken with a digital camera and were subsequently
processed to produce low resolution, greyscale images (Fig. 4).
The imageswere thenbinarised (whiteandblack) usinga cut-off
of 0.4. All of our analyseswere done on the black voxels. Further
details of thedataset andphotographic setupare given inProulx
and Parrott (2008).
5. Results

For each data set, we calculated blob metrics for blob type 1,
including: blob volume and shape characteristics and frequency
distributions, density, fractal dimension, contagion and spatio-
temporal complexity. For the purposes of demonstration, we
calculated only a limited number of compositionmetrics for our
datasets, selecting those that are non-trivial for 2-phase
mosaics. Resultsof the calculations for theselectedcomposition
and configuration metrics are given in Table 1. Distributions
showing the frequency of blob volumes are given in Fig. 5.

5.1. Composition metrics

5.1.1. Space–time density, number of blobs, distribution
frequency and blob shape complexity
A study of the space–time density of each data set compared
to the number of blobs present, gives important initial
metrics for the analysis of spatiotemporal data in ecology,

http://dx.doi.org/10.1016/j.ecoinf.2008.07.001


Fig. 4 –Two snapshots from the forest data set. Above: low resolution greyscale images; below: binary versions used for the blob
analyses.
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information about the composition of the data cube. Four data
sets (Random30, Column, Spread and Lotka-Volterra) all have
a density of 30, but have very different numbers of blobs,
indicating very different spatiotemporal patterns. The two
sets containing only 1 blob (Column and Spread) can be
differentiated by studying their shape complexity measures,
through which we learn that the Column data set contains a
Table 1 – Values of composition and configuration metrics calcu

Data set Dimensions
Nx×Ny×Nt

Composition m

Density Number of
blobs

Blob shap

Von
Neuman

Moore Von
Neuman

Mean St

Random 99×99×1000 0.50 91,744 5 0.99 0.0

Random30 99×99×1000 0.30 574,187 669 0.87 0.2
Column 100×100×1000 0.30 1 1 1.00 0.0
Spread 100×100×1000 0.3 1 1 0.34 0.0
Lotka-Volterra 99×99×1000 0.29 498,149 1390 0.96 0.1
Host–Parasite 99×99×1000 0.67 11 11 0.37 0.1
Forest 150×150×100 0.42 15,641 3782 0.93 0.1

⁎ Value was estimated over a limited range of scales.
No shading indicates the four data sets having similar space–time densit
and were calculated using 166 subsamples of the dataset.

Lotka-Volterra 99×99×1000 0.29 498,149 1390 0.96 0.1

Please cite this article as: Parrott, L., et al., Three-dimensional
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single rectangular object (shape complexity=1). The spiralling
waves in the host–parasite model give rise to large contiguous
areas in the Host–Parasite data set, explaining the low number
of blobs. From the low blob shape complexity, we see that
these blobsmust have a fairly sparse form. The Random30 and
Lotka-Volterra data sets both contain very large numbers of
blobs and have similar frequency distributions of blob sizes
lated for the model and empirical datasets

etrics Configuration metrics

e complexity Fractal
dimension

Contagion Spatiotemporal
complexity

(STC)
Moore Von

Neuman
Moore

d Mean Std

8 0.90 0.22 2.9⁎ 0.00 0.00 0.71±0.00

6 0.97 0.12 2.8⁎ 0.12 0.12 0.69±0.00
0 1.00 0.00 2.9⁎ 0.87 0.87 0.25±0.00
0 0.34 0.00 2.8⁎ 0.96 0.93 0.23±0.00
3 0.76 0.31 2.8⁎ 0.15 0.15 0.91±0.03
2 0.37 0.12 2.9⁎ 0.36 0.26 0.90±0.01
7 0.86 0.26 2.7 0.25 0.17 0.96±0.05

ies. Confidence intervals for the STC values are 1 standard deviation

3 0.76 0.31 2.8⁎ 0.15 0.15 0.91±0.03

metrics for the analysis of spatiotemporal data in ecology,
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Fig. 5 –Probability density function of the volume of blobs
present in selected data sets, using the von Neumann
neighbourhood. Both axes are in the log scale.
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(Fig. 5), with the important exception that the Lotka-Volterra
data set has a fat-tailed distribution (as evidenced by the
presence of low frequency, high volume blob(s), the presence
of which is highly improbable for random data). A study of the
frequency distributions of blob volumes is important for
distinguishing random and complex data sets: while all but
the Host–Parasite data sets appear to have power law
distributions of blob volumes, those that have more complex
spatiotemporal distributions (Lotka-Volterra and Forest) gives
rise to distributions with fat tails (Fig. 5).

5.1.2. Fractal dimension
The fractal dimension of each data set was estimated using
the box-counting algorithm. A graph of ln(N) versus ln(L) was
generated and d was estimated as the slope of the best fit line
through the points. The Forest data set was the only data set
that was truly fractal, for which Nα Ld over all scales. The other
data sets, several of which are clearly not fractal, showed
scaling relationships over limited ranges of Land the value of d
was estimated for this range. All of these sets have d≈3,
indicating that their dimensions are close to the topological
dimension of 3.

5.2. Configuration metrics

5.2.1. Contagion
The contagion measure was calculated for all of the data sets
using both the von Neumann and Moore neighbourhood (6-
and 26-neighbourhood sizes respectively). Contagion responds
Please cite this article as: Parrott, L., et al., Three-dimensional
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in a predictable fashion, giving a value of zero for the Random
data set and the highest value to Spread. It is thus useful for
characterising the degree of dispersion in a data set. Contagion
is, however, sensitive to the density of the data set (giving a
non-zero value to Random30) and to the neighbourhood type.
Themeasure is also not able to differentiate the Lotka-Volterra
dynamics (contagion = 0.15) from random space–time
dynamics having the same blob density (Random30,
contagion=0.12).

5.2.2. Spatiotemporal complexity
The spatiotemporal complexity was calculated for each data set
using a moving window size of 3×3×3 cells. The choice of
windowsizewasarbitrary (althoughseediscussionbelow). STC is
muchmore effective thancontagionatdescribing thecomplexity
of the spatiotemporal pattern. It clearly differentiates between
uniform blob shapes (Column and Spread both have low STC
values), randompatterns (both randomdatasetshaveSTCvalues
around 0.7) and complex patterns (the Lotka-Volterra, Host–
Parasite and Forest data sets all have high values (N0.9) of STC). It
is also capable of distinguishing between the 4 data sets that all
have a density of about 0.3 but which have different spatiotem-
poral patterns. This measure is thus highly recommended for
characterising the complexity of spatiotemporal data.
6. Discussion

None of themetrics presentedhere can completely characterize
a dataset. Each captures different aspects of how the blobs are
distributed in space–time. Appropriate use of these metrics
requires knowledge of what each one represents, and a
combination of metrics is required to describe the overall
spatiotemporal dynamics. An informed analysis using a suite
of 3D metrics to compare data sets will, therefore, distinguish
betweendifferent types anddistributionsof data. In general, the
most complex data sets (Lotka-Volterra and Forest) had fat-tail
power law distributions of blob volumes (indicating a scale-free
structure in space–time) and high values of STC. Simple data
sets, consisting of a single solid object (Column or Spread) had
high values of contagion and low STC. It is interesting to note
that the natural dataset (Forest) is the only example that
exhibits a scale-free structure both in the calculation of the
fractal dimension via box-counting and in the distribution of
blob volumes. It also has the highest value of spatiotemporal
complexity (STC=0.96). All of these indicators suggest that the
natural dataset probably has the highest degree of complexity.

We note also that the analyses presented here were limited
to 2-phasemosaics for reasons of simplicity, however all of the
metrics (except for STC) are applicable to n-phases. The study
of n-phase data (where nN2) opens up much richer possibi-
lities for the characterisation of spatiotemporal dynamics and
may enable the comparison of the dynamics of different
categories of blobs on the same landscape.

6.1. Neighbourhood effects, extent and grain of the dataset

Like2D landscapemetrics, thevaluesof the3Dmetricspresented
here will also be affected by neighbourhood and edge effects as
well as by the extent and grain (resolution or size of the smallest
metrics for the analysis of spatiotemporal data in ecology,
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sampling unit) of the dataset. We note that although the choice
of neighbourhood affected the number of blobs identified in our
datasets, it did not have a large effect on the values of the other
metrics. It is well known, however, that the size of the sampling
unit as well as the extent of the data set will change a number of
attributes of spatial data, including variance, autocorrelation,
andmeanpatch size (Dungan et al., 2002). Clearly, the extent and
resolution of a dataset affects the number of scales over which
certain dynamics can be observed. It is also possible that for
certain data, there are “critical” resolutions at which certain
phenomena are observable, and that the data is most (or least)
complex at these resolutions. A thorough study of all of these
factors should be done in future work.

6.2. Notes on the fractal dimension

While well defined for perfect mathematical objects, when
applied to real objects, the fractal dimension is a problematic
measure, since it isonlyapplicableovera limitedrangeof scales. It
also does not appear to be very sensitive to differences in
spatiotemporal pattern, since it was unable to discern between
therandomlydistributeddataversussolidobjects inourdatasets.

6.3. Notes on the spatiotemporal complexity measure and
choice of window size

This measure is superior to many others for the characterisa-
tion of the overall spatiotemporal pattern in a data cube.
However, like other measures such as contagion, STCmust be
interpreted with caution. Its value is also affected by the
density of the data cube and by the size of themoving window
used to sample the data (here we always used a window of
3×3×3). When calculating STC for a data set, the value
obtained should always be compared to that for random
Fig. 6 –Effect of varying density andwindow size on the calculation
a cube having a different data density. Lines for equivalent dens
densities of 0 and 1.0 regardless of window size.

Please cite this article as: Parrott, L., et al., Three-dimensional
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data having the same density. Fig. 6 shows the effect of
varying density and window size on the calculation of STC for
randomly distributed data.

Data cubes that have large variations in density over space or
timemay give overall STC values that poorly represent the type of
dynamics present. For example, a cube with periodic spatiotem-
poraldynamicsalternatingbetweenacompletelyoccupiedspatial
configuration (STC=0) and a random spatial configuration
(STC=0.7) would give an overall STC value somewhere between
the 2 cases. For an overall STC value to be characteristic of the
whole space–time cube, data density should be relatively sta-
tionary in space and time. In situations for which this is not the
case, sub-sampling of the data cube would be more appropriate.

Lastly, it is not necessary that the moving window used for
STC calculations be cubic (square on all sides). The moving
window may take on any dimension, and it may make sense,
for example, in a case where the spatial resolution is much
finer than the temporal resolution, to use a window having a
large spatial extent and a smaller temporal dimension (e.g.,
3n×3n×n). The choice of window size is also something to
consider when using STC and the effect of different window
sizes should be tested on a dataset. As shown in Fig. 6, for
random data, the value of STC converges towards a stable
value with increasing the window size.

6.4. Sub-sampling

For sufficiently resolved data sets (e.g., high values ofNx,Ny and
Nt) there are a number of interesting analyses that can be done
via thesub-samplingof thedata cube.Metrics suchas contagion
and STC can be calculated for specific volumes of the space–
time cube in order to detect regions of high complexity (e.g.,
areasona landscape that, via their dynamics, aremore complex
than others) or regions for which the spatiotemporal dynamics
of STC for uniformly distributed randomdata. Each line is for
ities (i.e., 0.4 & 0.6; 0.3 & 0.7; etc.) are overlapping. STC=0 for
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is essentially random (as indicated by a lowcontagion value and
an intermediate value of STC). Such sub-sampling will allow for
a finer analysis of the space–time dynamics, potentially
enabling the differentiation of regions governed by different
underlying ecological processes. Sub-sampling may be done
alongonlyone axis (e.g., by taking successive “slices”of the cube
in time) as ameans of studying how themetric varies along this
axis. In Parrott (2005), an STC analysis of vegetation dynamics in
a model ecosystem based on calculations of successive tem-
poral slices of the data set, was used to show how the
spatiotemporal complexity of vegetation patterns varied over
time in response to disturbance. The analysis showed that STC
decreased immediately after disturbance and then increased as
the community recovered.

6.5. Applications to ecological monitoring

Effectivemonitoringand characterisationof ecological dynamics
necessitates a truly spatiotemporal approach. Almost all ecolo-
gical variables exhibit a heterogeneity that varies in space and
time. Exogenous factors that affect ecological processes are also
heterogeneous in space and time. Ecological processes are thus
affected by multiple, interacting variables that have different
spatiotemporal patterns and which all contribute to emergent,
ecosystem level properties. Characterisation of these spatiotem-
poral patterns is thus a key element necessary for the under-
standing of ecological dynamics, particularly in the face of
disturbance and climate change that might alter the historical
spatiotemporal distributions of certain variables. It is thus
imperative to be able to characterise the spatiotemporal
distributions, as a means of monitoring and detecting change.
Metrics such as those presented here are a possible approach,
amongst others. Such metrics can be calculated for known
ecological regimes, and serve as baseline values against which
other systemsmay be compared. Lastly, the use of suchmetrics,
especially those that characterize the complexity of the spatio-
temporal dynamics, can serve as a common reference scale for
thecomparisonofcompletelydifferent systemsand/orvariables.

6.6. Future work

Alimitationofall of thesemetrics is that theyareapplicableonly
to univariate data. Further work should include the develop-
ment of measures for multivariate data, allowing, for example,
thecomparisonofhow2ormorevariables evolve inspace–time.
In addition, all of these metrics apply to categorical data, thus
continuous variables need to be classified before analysis. Such
categorisation ultimately results in loss of information andmay
cause artefacts, depending on the choice of boundaries and the
number of categories used. In cases where this is problematic,
othermethods (such as 3D variograms) designed for continuous
variables are more appropriate. Some of the metrics presented
here may be adapted to deal with particular cases, such as
irregularly sampled data, that are common in ecological data.
For example, the definition of “neighbourhood” could be
redefined. Through the use of a weighted distance matrix, a
neighbourhood may be considered to be simply a certain
number of nearest neighbours. Alternatively, a neighbourhood
could be defined as all points residingwithin a sphere of a given
radius. In certain cases, irregularly sampled data or data with
Please cite this article as: Parrott, L., et al., Three-dimensional
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missing values may be interpolated to generate a grid-based
data set. Many specialised interpolation routines exist, includ-
ing methods for 3 and 4 dimensions (Li and Revesz, 2004).
Lastly, in all of our examples, we have referred to spatiotem-
poral data. It should not be forgotten that all of the metrics
presented here are equally applicable to any 3-dimensional
dataset. With modified definitions of neighbourhood adja-
cencies, some of these metrics may also be applied in higher
dimensions (e.g., x, y, z and t).
7. Conclusion

We have presented a number of 3D metrics that can be used to
describe raster-based spatiotemporal data. Thesemetrics arenot
a panacea, but are intended to contribute to the growing toolbox
of methods available to ecologists to analyse spatiotemporal
data. We have purposefully extended already existing concepts
of “patch” and associated landscape metrics to 3-dimensions in
order to remain within the existing conceptual framework used
to analyse raster-based ecological mosaics. The problem of
classification that exists for all raster data is, of course, present.
Many environmental variables are continuous in both space and
time and discretization is scale-dependent and error-prone.
When working with such data, one should always be aware of
these limitations. On the other hand, many of the available
datasets and existing sampling methods in ecology are grid- or
raster-based, and it is therefore essential to continue the
development of methods that are adapted to this type of data.

Themethods presented here were developed by the authors
as a way of dealing with the vast amounts of spatiotemporal
data being generated by our ecological models. Such data is
increasingly abundant amongst ecological modellers. In addi-
tion, repeat photographyby field ecologists, combinedwith over
30 yearsof satellite datameans that spatiotemporal datasets are
increasingly common. The time is ripe to develop novel
methods capable of analysing such spatiotemporal data. We
hope that the ideas presented here will be adopted and further
developed by others searching to understand and characterise
the inherently spatiotemporal dynamics of ecological systems.
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