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Abstract
We examine the role played by crossover in a series of genetic algorithm-based evo-
lutionary simulations of the iterated prisoner’s dilemma. The simulations are char-
acterized by extended periods of stability, during which evolutionarily meta-stable
strategies remain more or less fixed in the population, interrupted by transient, un-
stable episodes triggered by the appearance of adaptively targeted predators. This
leads to a global evolutionary pattern whereby the population shifts from one of a
few evolutionarily metastable strategies to another to evade emerging predator strate-
gies. While crossover is not particularly helpful in producing better average scores,
it markedly enhances overall evolutionary stability. We show that crossover achieves
this by (1) impeding the appearance and spread of targeted predator strategies during
stable phases, and (2) greatly reducing the duration of unstable epochs, presumably by
efficient recombination of building blocks to rediscover prior metastable strategies. We
also speculate that during stable phases, crossover’s operation on the persistently het-
erogeneous gene pool enhances the survival of useful building blocks, thus sustaining
long-range temporal correlations in the evolving population. Empirical support for
this conjecture is found in the extended tails of probability distribution functions for
stable phase lifetimes.
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1 The Iterated Prisoner’s Dilemma

The prisoner’s dilemma, a well-known model-problem in game theory, has now be-
come a standard paradigm in studies of the emergence of cooperation among selfish
individuals (Axelrod and Hamilton, 1981; Axelrod, 1987; Brembs, 1996). Two non-
communicating, competing “players”, A and B, must choose to either cooperate (C) or
defect (D). They score points according to a payoff matrix (see Table 1) that specifies
each player’s score according to the four possible combinations of mutual moves. The
numerical values for the entries in the payoff matrix have become a kind of standard,
following early work in the field (Axelrod and Hamilton, 1981). The “dilemma” arises
because the optimal outcome for each player materializes by defecting provided that the
other player cooperates (DC→ [5, 0]). Mutual defection is bad for both (DD→ [1, 1])
while mutual cooperation yields intermediate scores for both players (CC→ [3, 3]).
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Table 1: Payoff matrix for the Iterated Prisoner’s Dilemma.
�����A

B
Cooperate Defect

Cooperate
�����3

3 �����0
5

Defect
�����5

0 �����1
1

If players meet only once and no prior information is available on the other
player’s behavior, then the best strategy is to defect. However, mutual cooperation does
better under repeated encounters where players “remember” one or more of the oppo-
nent’s previous moves. This situation defines the iterated prisoner’s dilemma game
(hereafter IPD). Early research on the IPD showed that a remarkably simple strategy,
dubbed Tit-For-Tat (TFT), did quite well under a variety of tournament setups against
far more elaborate strategies (see Axelrod and Hamilton (1981)). TFT acts on the basis
of the opponent’s single previous move. It starts off nice (C on first encounter), retali-
ates ruthlessly (D if opponent’s previous move was D, no matter what anterior moves
were), and does not hold a grudge (C if opponent’s previous move was C, indepen-
dently of earlier moves). TFT does quite well playing against itself (CC→ [3, 3] at each
move). However, TFT-specific “predators” are readily constructed. For example, Anti-
TFT (ATFT) operates like TFT except that it always defects on the first move; the first
encounter yields a payoff of 5 for ATFT, giving it an initial scoring edge that TFT can-
not overcome in the subsequent suite of mutual defections (DD→ [1, 1]). Tit-for-two-tat
(TF2T) is a “generous” strategy that grants the opponent a chance to cooperate anew af-
ter a first defection, i.e., it requires two D’s in a row from the opponent to switch its own
moves from C to D. ALLC always cooperates, and represents the ultimate “sucker”
strategy in the IPD.

Beginning with the pioneering work of Axelrod (1987) , searches for optimal IPD
strategies have been made by evolving a population of strategies, ensuring that above-
average strategies contribute a greater fraction of the population at the next genera-
tional iteration. An interesting question in this context, and one that has been subjected
to great scrutiny (Boyd and Lorberbaum, 1987; Nowak and Sigmund, 1992; Nowak and
Sigmund, 1993; Fogel, 1993), is whether there are IPD strategies that are evolutionar-
ily stable, i.e., that do well against themselves yet can resist invasion by prey-specific
strategies (such as ATFT preying upon TFT). As far as deterministic strategies are con-
cerned, the answer has been shown to be “no” (Boyd and Lorberbaum, 1987), but in the
context of stochastic strategies, TFT was found to be a very useful intermediate step to-
wards the emergence of very stable strategies (Nowak and Sigmund, 1992). Mistakes in
the implementation of a move, playing cooperation instead of defection or vice-sersa,
allow evolutionary stability (Boyd, 1989). Lindgren (1991) found an evolutionary stable
strategy with a memory of four while studying strategies with different memory size.
The introduction of multiple choices induce diversity in behavior which make the co-
operation more robust in noisy environment (Chong and Yao, 2005; Darwen and Yao,
2002).

Genetic algorithms (hereafter GAs) represent one class of population-based evolu-
tionary algorithms that have been used extensively in the study of the IPD. In classical
GAs, a crossover operator exchanges substrings between binary strings defining two
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population members selected for breeding. In the presence of selection pressure, this
can lead to an exponential increase in the frequency of substrings that confer their bear-
ers above-average fitness in the population (Holland, 1992 ). Evolution then becomes
primarily a matter of searching for these advantageous “building blocks”, and combin-
ing them in single individuals in the course of breeding (Holland, 1992; Spears, 1993).
Mutation, random changes of single bits in an individual’s defining string, is seen as a
secondary process, although it is needed to maintain variability across the population,
and, in doing so, guards against premature convergence.

It has proven surprisingly difficult to empirically and unambiguously demonstrate
the usefulness of crossover in the context of specific search and optimization problems
tackled with GAs (Fogel and Atmar, 1990; Spears, 1993; Culberson, 1994; Jones, 1995),
or to identify the various roles played by crossover in the evolutionary search process
(Spears, 1993; Holland, 2000). Yet, crossover seems ubiquitous in biological genetic
systems. Holland (2000) lists four main reasons given to explain this prevalence of
crossover, which he ranks in order of importance as follows: (1) recombining build-
ing blocks; (2) providing persistent variation to escape adaptive targeting by “preda-
tors”; (3) repairing mutational damage; (4) generating large jumps in genetic “parame-
ter space”. In principle, all four of these roles should carry over to the GA context.

In this paper, we carry out and investigate a series of genetic algorithm-based evo-
lutionary simulations of the iterated prisoner’s dilemma. The simulations offer an evo-
lutionarily dynamical environment in which, among other things, the role of crossover
can be examined. Our experimental design is described in §2, and our time series analy-
sis technique in §3. Results are presented and discussed in detail in §4. We then offer
some speculative ideas regarding the role of crossover in sustaining long-range tem-
poral correlations in the evolving population (§5). We close in §6 by summarizing our
main results and arguments, and their possible implications for evolutionary dynamics
at large.

2 Evolutionary Simulations of the Iterated Prisoner’s Dilemma

2.1 Experimental Setup

Following Axelrod (1987) , we use a standard GA to evolve a population of M = 100
reactive and deterministic IPD strategies up to N = 107 generational iterations. Sto-
chastic tournament selection is used to determine which strategies in the current gener-
ation contribute offspring to the next. Each individual strategy confronts 10 randomly-
selected population members (excluding itself), each time playing 66 game moves. An
average score-per-move is then computed for each population member. A subset of
strategies having collected higher-than-average scores are then isolated, and breed the
next generation amongst themselves. Population replacement takes place by making
M/η copies of each of the top-η subset of strategies, pairing them randomly, and apply-
ing to each corresponding pair of defining strings the usual GA operators of crossover
and mutation. Elitism is enforced, i.e., the best strategy of the current population is
always copied intact once into the next generation. With M offspring strategies so
constructed, the next tournament then opens anew. All this amounts to rather severe
selection pressure; in the absence of recombination and mutation, the takeover time for
the best initial strategy is found (empirically) to be about 6 iterations for η = 20.

Strategies are encoded as a 6-level-deep binary tree (see Figure 1 for two 4-level-
deep examples). Starting at the top of the tree, a downward path is followed according
to the opponent’s previous five moves, ending in a “decision”, C or D, for the current
game move. The strategy is thus defined by the binary values assigned to the tree’s 63
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Figure 1: A 4-level version of the 6-level binary tree used to encode strategies, for the
TFT (left) and ATFT (right). The coding is such that 1 ≡Cooperation, 0 ≡Defection
and “#” is a “don’t care” symbol. Starting at the root, one moves right (left) if the
opponent last move in memory is C (D); the process is repeated down to the bottom of
the tree, and the current move is the value thus arrived at. The two strategies encoded
here would, upon meeting, play the sequence [TFT,ATFT]: [1,1], [2,3], [4,6], [8,12], [8,8],
[8,8],... amounting to [C,D] on the first move, followed by [D,D] ever after.

nodes (1 ≡C, 0 ≡D). Cooperation (defection) by the opponent on the previous move
triggers the next-move decision encoded on the right (left) branch originating from the
current node. With these numbered layer by layer starting at the top, a strategy ends
up being defined by a 63-bit-long string. Instead of taking only the last row as Axelrod
(1987) did, we prefer to have strategies that can make decision without full memory
load instead of creating a virtual one for the first moves that never occurred. Encoding
the decision as a tree enable actual strategies for the first, and all later moves. In the
first 5 moves of a given confrontation, when the information needed to move down the
whole tree is not yet available, the scan stops once information on prior moves runs out
(level 1 on first move, level 2 on second, etc., up to move five, from which point the full
tree depth is utilized). Reading the tree from left to right at each row, starting at the top
(root of the tree) and going through all the row until the last one, we end up with the
string used in the simulations. Under this representation, TFT is defined by the string
1010101... (Fig. 1, left), ALLD by 0000000..., and TF2T by 111011101110....
The prey-specific ATFT is encoded by “0” at locii 1,3,6,12,24,32,48, and “#” everywhere
else, where “#” is a “don’t care” symbol, indicating that the corresponding node plays
no role against TFT (see Fig. 1, right). Note that only two bit-flip mutations, at locii 1
and 3, are needed to turn a TFT into an ATFT. As seen from the example of TFT and
ATFT, not all nodes are used. In this confrontation the nodes represented by “#” in
ATFT are not read.

We use uniform one-point crossover (with fixed probability pc) and uniform bit-
flip mutation (fixed probability pm at each bit). In what follows the value of pm is set
at 1/n, where n = 63 for a 6-level deep binary tree is the number of bits in the defining
string. Note that this then implies pm � pc, which is the usual case in most standard
GAs.

For ease of reference, Table 2 lists the defining parameters of our “reference” simu-
lation 1. Although most of the discussion to follow focuses on this reference simulation,
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Table 2: Parameters of reference simulation.
Parameter Value

Generational iterations N 2.5×106

Population size (M ) 100

binary tree depth 6

string length (n) 63

confrontations per iteration 10

IPD moves per confrontation 66

Breeding subset size (η) 20

crossover probability (pc) 0.7

mutation probability (pm) 1/63

and three no-crossover counterparts (pc = 0), we also carried out similar simulations
for crossover probabilities in the full range 0 ≤ pc ≤ 1, and mutation probability rang-
ing from one fifth to 12 times the reference value pm = 1/63, which corresponds to
mutation affecting on average one bit per offspring string bred. We also ran some sim-
ulations at higher and lower selection pressures, by setting the breeding subset para-
meter η to values of 10 and 50, respectively. The results reported below do not depend
sensitively on numerical choices for these parameters, within reasonable bounds.

The simulation starts with purely random strategies, constructed by assigning bi-
nary values of “0” or “1” with equal probabilities to every node of the tree. Some
simulations were also seeded by artificially inserting a single TFT player in the other-
wise random initial population, but this did not lead to any significant differences in
the overall behavior across the length of the simulations.

2.2 Representative Simulation Results

Let s(i) represent the array containing the average score-per-move (hereafter “score”)
achieved by each strategy within the current population at generational iteration i:

s(i) = {s1(i), s2(i), ..., sM (i)} , (1)

where M is the population size; define now the time series s of the score achieved at
each iteration by the current best strategy, i.e.,

s(i) = Max( s(i) ) . (2)

The solid line on Figure 2 is a 1200-iteration representative portion of such a time series,
extracted from a typical simulation run. The mean score of s(i) across the whole 2.5 ×
106 iterations of this simulation is 2.50, with a r.m.s. deviation of 0.19. For perspective,
recall that for our adopted IPD payoff matrix, TFT playing against itself yields a score
of 3, while ALLD playing against the ultimate “sucker” strategy ALLC scores 5 (with
ALLC getting zero).

The first thing to note upon examining the simulations in their totality is that,
indeed, there are no strictly evolutionarily stable deterministic strategies for the IPD.
Even when run repeatedly from different initial populations, convergence to a final,
ever-stable population-wide strategy never occurs. However, the simulations do reveal
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Figure 2: A 1200-iteration representative portion of the time series, for best score at each
iteration, 2105500 iterations after the beginning of a typical simulation. The two sets of
gray tick marks and horizontal bars indicate respectively the beginning and duration
of stable phases, as determined by the recursive running mean technique described in
§3, under two settings of the tolerance parameter, ε = 0.05 (top) and ε = 0.1 (bottom).

extended periods of stability, whether measured in terms of best-score (as on Fig. 2),
population-averaged score, or even “genotypic” measures such as Hamming distances.
Strictly speaking we should refer to such phases as “metastable”, although for the sake
of brevity we will usually retain the appellation “stable”. The properties and statistics
of these stable phases, as well as of the intervening unstable periods, are the focal point
of what follows.

The general pattern of long stable phases (subsegments labeled “A” and “C” on
Fig. 2), punctuated by disturbances and relatively short-lived unstable phases, resem-
bles what has been dubbed “punctuated equilibrium” in the biological evolutionary lit-
erature. In the fossil record, this pattern is increasingly recognized as the norm rather
than the exception (Gould and Eldredge, 1993). Lindgren (1991) found a similar dy-
namic when studying the evolution of the memory length —equivalent here to our
binary tree depth— in the prisoner’s dilemma. Here it arises when an evolutionarily
(meta)stable strategy appears in the population. Such strategies do well when playing
IPD against one another, and, provided they can gain a foothold in the existing pop-
ulation, they will lead to evolutionary stability. Because the population as a whole is
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getting more cooperative, strategies can drop their guard against defection. They may
also be susceptible to a new strategy that “discovers” how to exploit whatever failings
they might present (Darwen and Yao, 1995). This shows up clearly here, as a prominent
spike terminating most stable phases (end of “A”, and immediately prior to “B”, on
Fig. 2). Such predator strategies, however, usually exploit some specific Achilles’ heel
of an equally specific prey-strategy. They are often not particularly efficient playing
IPD against each other, i.e., they are targeted predator adaptation. Because our simu-
lations are carried out with high selection pressure, the formerly stable prey strategies
are rapidly decimated. This is usually followed by an unstable period of lower-than-
average score, often of significant duration, during which the distribution of strategies
within the population—and thus the score measures—vary widely (“B” on Fig. 2). Sta-
bility is restored once a metastable strategy emerges again in the population. Note that
all stable phases are not created equal; on Fig. 2, the fluctuations about the mean for
plateau “A” are distinctly larger than for plateau “C”, reflecting the degree to which the
dominant strategy is indeed evolutionarily stable. These overall evolutionary patterns
are quite characteristic of all simulations performed at varying crossover and mutation
probabilities, for different population size and/or groupings, with or without elitism,
for different breeding subset size η, etc.

Shorter simulations with different binary tree depth and number of game moves
per confrontation were also carried out, as listed on Table 3. The Table gives the fraction
of simulation time spent in stable phases, for our reference simulation 1 (see Table 2), as
well as the three variants to be introduced shortly below. Across all simulations, only
those with binary tree depth of at least 5 levels (memory of 4 moves) yield a punctu-
ated equilibrium-like evolutionary dynamic, where a high fraction of simulation time
is spent in stable phases, in agreement with the results of Lindgren (1991). We use
long enough confrontation (66 game moves) so that the initial transient during which
the whole tree depth is not yet used to reach a decision does not overly influence the
strategy’s final score on a given confrontation. For long enough confrontations, aug-
menting the breeding subset size (η = 10, 20, 50) increases the fraction of time spent in
stable phases when punctuated equilibrium-like dynamics is observed (not shown).

Simulations were done on a SunFire V880 computer running UltraSPARC III
processors with 900MHz clock. Representative simulations were taking on the order
of 100 hours to run and analyze on a single processor.

3 Extracting Strategy Lifetimes

Throughout the foregoing analysis, we adopt a “phenotypic” viewpoint, in that we
analyze the simulation results in terms of “observable” quantities, primarily time series
of various score measures such as on Fig. 2. A central requirement of such an analysis
here is to automatically (and reliably) identify phases of stable scores on such time
series. Among the many possible plateau-identification schemes, we use the following
two.

We first consider an algorithm based on recursive running means. From some
specified starting point j in the (discrete) time series of best scores s(i), we compute a
running average

A(j, k) =
1

k − j + 1

k∑
i=j

s(i) (3)

where the averaging ends once an iteration k (> j) has been found such that |A(j, k) −
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Table 3: Effect of binary tree depth and game moves per confrontation.
Binary tree Moves per Fraction stable

depth confrontation
sim 1 (•) sim 2 (�) sim 3 (�) sim 4(∗)

2 20 0.006474 0.006306 0.001560 0.0036640 (d̂ = 0.18717)
2 40 0.005432 0.005184 0.001260 0.0028400 (d̂ = 0.18885)
2 70 0.004682 0.004590 0.001196 0.0023940 (d̂ = 0.19058)
2 80 0.005140 0.005042 0.001050 0.0026840 (d̂ = 0.18971)
3 20 0.027126 0.045366 0.005874 0.0054720 (d̂ = 0.15007)
3 40 0.015782 0.040284 0.004460 0.0045920 (d̂ = 0.128921)
3 70 0.012924 0.035392 0.004044 0.0045680 (d̂ = 0.125676)
3 80 0.011934 0.037426 0.004006 0.0042020 (d̂ = 0.126191)
4 20 0.175720 0.150316 0.048360 0.014354 (d̂ = 0.106015)
4 40 0.108454 0.170786 0.039976 0.013356 (d̂ = 0.095579)
4 70 0.070144 0.100586 0.030772 0.012304 (d̂ = 0.095047)
4 80 0.066980 0.087046 0.029448 0.010646 (d̂ = 0.095531)
5 20 0.309232 0.285546 0.188784 0.038856 (d̂ = 0.079495)
5 40 0.453592 0.414696 0.295642 0.048150 (d̂ = 0.079495)
5 70 0.474070 0.450648 0.318606 0.051406 (d̂ = 0.078484)
5 80 0.463210 0.450440 0.319714 0.051690 (d̂ = 0.078620)

s(j)| rises above some preset tolerance ε (set to 0.05 in what follows, unless otherwise
noted). The process is repeated recursively starting now at iteration j + 1 to compute
the running mean, but keeping the same “origin” at s(j) for the stopping criterion. The
smallest k value (k∗, say) found through the recursive iteration becomes the end of the
plateau, which is then assigned a lifetime τ = k∗ − j. The search for the next plateau
then begins anew by resetting the origin at k∗ + 1.

We also made use of a derivative-based algorithm, whereby the time series is first
smoothed using a 21-iteration-wide boxcar averaging filter. This filter, assign the av-
erage value of the 20 surrounding values, ten before, ten after and the current to the
current position. With the filtering we loose 20 values: the first and last ten. A plateau
is deemed to end, and the next one begin, whenever the absolute value of the first deriv-
ative of the smoothed time series exceeds some preset tolerance ε′ (usually = 0.003).

This task of reliably and automatically identifying stable phases turns out to be
surprisingly delicate. Some of the pitfalls are readily seen upon comparing the two
plateau-identification runs displayed along the top and bottom parts of Fig. 2. The gray
vertical lines mark the onset of stable phases, and the horizontal gray bars indicate
their corresponding lifetime. The two sequences were obtained using the recursive
running-mean method described above, with the top sequence corresponding to our
adopted tolerance value ε = 0.05, and the bottom sequence to twice that tolerance.
Not surprisingly, the smaller tolerance breaks up noisy plateau (“A” on Fig. 2) in a
larger number of shorter stable phases than greater tolerance does. The “eye” perhaps
would prefer to see a long but noisy stable phase extending over the complete “A”
interval. On this basis one might be tempted to give preference to higher tolerance
levels. Consider however the unstable phase “B”; the low-tolerance run finds only
two short stable phases there, while the higher tolerance run identifies seven. The
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former now appears preferable. Focus now on the low-noise interval “C”. The high
tolerance run identifies it as a single stable phase, which seems eminently sensible. Yet
closer examination reveals a small but significant drop in the mean score, taking place
approximately halfway through the interval. The low tolerance run correctly detects
this, although it also inserts a short intermediate phase following a short noisy episode.

We have carried out all analyses of the simulation time series with both a low and
high tolerance value, as well as with the derivative-based method described above.
Unless explicitly stated otherwise, all results discussed in what follows use the recur-
sive running mean method with tolerance value ε = 0.05, as on the top part of Fig. 2.
These in fact correlate very well with the stable phases identified using the derivative-
based scheme with ε′ = 0.003. Fortunately, our results and interpretations turn out to
be robust with respect to the choice of plateau identification technique and associated
internal parameter settings (within reasonable bounds of course).

Although the takeover time associated with our tournament selection procedure
is quite short (anywhere from 5 to 10 iterations, depending on the adopted value of the
breeding subset size η), it still represents a lower bound of what can be meaningfully
dubbed a “stable phase”. Consequently, unless noted otherwise, we will exclude from
the foregoing analysis stable phases of duration inferior to five generational iterations.

4 Simulation Results: Crossover and Stability

Of particular interest in what follows is the role played by crossover in the evolution-
ary dynamics of the IPD. The most straightforward way to assess the usefulness of
crossover is to compare various measures in a simulation with crossover, and a sec-
ond simulation with crossover turned off but otherwise identical. Note however that
for a given mutation probability pm, including crossover increases the probability of
disruption at breeding (elitism notwithstanding). For the 63-bit strings used here, the
disruption probability is d1 = 1 − (1 − pm)63(1 − pc) with crossover included, and
d2 = 1 − (1 − pm)63 without (Holland, 1992) . The simulation with crossover must
thus be compared also with a no-crossover simulation having a different mutation rate
p∗m such that d1 = d2. For our reference simulation with pm = 1/63 and pc = 0.7,
this requires p∗m = 0.0345. In the presence of natural selection, the disruption prob-
ability is altered by the convergence toward a smaller set of strategies than a purely
random set. We calculate the empirical disruption probability (d̂), that is the average
proportion of different bits between the parents and the offspring. In the absence of
crossover the empirical disruption probability is the same as the mutation probability.
In the presence of crossover, the empirical disruption probability is the average Ham-
ming distance between the parents divided by the string length (n). The simulation
with crossover is also compared to a simulation with the same empirical disruption
probability (d̂ = 0.078273). d̂ is constant throughout each simulation and does not
differ between stable and unstable phases, so we only need one simulation with empir-
ical disruption probability to the simulation with crossover (Table 4, Line 4, 5 and 6).
Consequently, we will compare results across four distinct “baseline” simulations, the
defining parameters of which are listed in Table 4 below. The first is the reference simu-
lation, the second is its no-crossover counterpart, the third is a no-crossover simulation
with pm = 0.0345 and the fourth is a no-crossover simulation with pm = 0.078273, as
per the above analysis. In this way we hope to measure the effects of crossover apart
from its disruptive action at breeding. Other simulation control parameters have val-
ues as listed in Table 2, which also lists a suite of measures extracted from these three
simulations, which are used in the foregoing discussion to assess the role of crossover.

Evolutionary Computation Volume 15, Number 3 329



X. Thibert-Plante and P. Charbonneau

Ta
bl

e
4:

D
efi

ni
ng

pa
ra

m
et

er
s

an
d

ch
ar

ac
te

ri
st

ic
s

of
fo

ur
ba

se
lin

e
si

m
ul

at
io

ns
.

L
in

e
M

ea
su

re
Sy

m
bo

l
D

ef
.e

q.
1

(•
)

2
(�

)
3

(�
)

4
(∗)

1
C

ro
ss

ov
er

pr
ob

ab
ili

ty
p

c
–

0
.7

0
0

0

2
M

ut
at

io
n

pr
ob

ab
ili

ty
p

m
–

0
.0

1
5
9

0
.0

1
5
9

0
.0

3
4
5

0
.0

7
8
3

3
D

is
ru

pt
io

n
pr

ob
ab

ili
ty

d
–

0
.8

9
0
.6

4
0
.8

9
0
.9

9

4
Em

pi
ri

ca
ld

is
ru

pt
io

n
pr

ob
ab

ili
ty

〈d̂
〉

§4
0
.0

7
8
3

0
.0

1
5
9

0
.0

3
4
5

0
.0

7
8
3

5
A

ve
ra

ge
em

pi
ri

ca
ld

is
ru

pt
io

n
pr

ob
ab

ili
ty

in
st

ab
le

ph
as

es
〈d̂
〉 S

§4
0
.0

7
9
0
±

0
.0

1
4
6

0
.0

1
5
9
±

0
.0

0
1
6

0
.0

3
4
5
±

0
.0

0
2
3

0
.0

7
8
2
±

0
.0

0
3
4

6
A

ve
ra

ge
em

pi
ri

ca
ld

is
ru

pt
io

n
pr

ob
ab

ili
ty

in
un

st
ab

le
ph

as
es

〈d̂
〉 U

§4
0
.0

7
7
6
±

0
.0

1
5
3

0
.0

1
5
9
±

0
.0

0
1
6

0
.0

3
4
5
±

0
.0

0
2
3

0
.0

7
8
3
±

0
.0

0
3
4

7
N

um
be

r
of

st
ab

le
ph

as
es

(τ
≥

5
)

K
–

1
0
2
9
9
2

9
2
3
5
1

8
2
8
9
2

2
2
3
1
3

8
R

un
-a

ve
ra

ge
d

be
st

sc
or

e
〈s
〉

(4
)

2
.6

2
±

0
.3

2
2
.6

9
±

0
.3

5
2
.6

4
±

0
.3

1
2
.4

0
±

0
.1

6

9
R

un
-a

ve
ra

ge
d

m
ea

n
sc

or
e

〈s
〉

(5
)

2
.4

1
±

0
.3

4
2
.4

6
±

0
.3

7
2
.3

6
±

0
.3

5
2
.0

1
±

0
.1

6

10
Fr

ac
tio

n
st

ab
le

φ
(6

)
0
.4

6
9

0
.4

5
0

0
.3

1
8

0
.0

5
3

11
A

ve
ra

ge
du

ra
tio

n
of

st
ab

le
ph

as
es

〈τ
〉

(7
)

1
1
.4

1
2
.2

9
.6

5
.9

12
A

ve
ra

ge
du

ra
tio

n
of

co
op

er
at

iv
e

st
ab

le
ph

as
es

〈τ
〉 C

§4
.3

1
6
.1

1
5
.6

1
1
.6

7
.3

13
A

ve
ra

ge
du

ra
tio

n
of

ot
he

rs
st

ab
le

ph
as

es
〈τ
〉 O

§4
.3

8
.8

8
.2

6
.9

5
.9

14
A

ve
ra

ge
du

ra
tio

n
of

un
st

ab
le

ph
as

es
〈∆

τ
〉

(7
)

1
5
.3

1
7
.9

2
3
.4

1
0
8
.0

15
A

ve
ra

ge
d

be
st

sc
or

e,
st

ab
le

ph
as

es
〈s
〉 S

–
2
.7

2
±

0
.2

4
2
.8

0
±

0
.2

3
2
.8

0
±

0
.2

1
2
.4

6
±

0
.1

1

16
A

ve
ra

ge
be

st
sc

or
e,

un
st

ab
le

ph
as

es
〈s
〉 U

–
2
.5

3
±

0
.3

6
2
.5

9
±

0
.4

0
2
.5

5
±

0
.3

3
2
.4

0
±

0
.1

6

17
A

ve
ra

ge
d

m
ea

n
sc

or
e,

st
ab

le
ph

as
es

〈s̄
〉 S

–
2
.6

0
±

0
.2

7
2
.7

0
±

0
.2

5
2
.6

4
±

0
.2

5
2
.1

4
±

0
.1

5

18
A

ve
ra

ge
m

ea
n

sc
or

e,
un

st
ab

le
ph

as
es

〈s̄
〉 U

–
2
.2

2
±

0
.3

1
2
.2

5
±

0
.3

3
2
.2

2
±

0
.3

0
2
.0

0
±

0
.1

6

19
R

un
-a

ve
ra

ge
d

sc
or

e
di

ff
er

en
ce

〈∆
s〉

(1
0,

7)
0
.1

8
0
.2

1
0
.2

5
0
.3

6

20
R

un
-a

ve
ra

ge
d

r.m
.s

.d
ev

ia
tio

n
〈σ

〉
(1

0)
0
.1

3
0

0
.1

3
6

0
.1

4
6

0
.1

8
4

21
A

ve
ra

ge
sc

or
e

di
ff

er
en

ce
in

st
ab

le
ph

as
es

〈∆
s〉

S
(1

4)
0
.0

8
3

0
.0

7
5

0
.1

1
9

0
.2

8
4

22
A

ve
ra

ge
r.m

.s
.d

ev
ia

tio
n

in
st

ab
le

ph
as

es
〈σ

〉 S
(1

4)
0
.1

1
0

0
.1

0
9

0
.1

1
6

0
.1

7
2

23
A

ve
ra

ge
d

sc
or

e
di

ff
er

en
ce

in
u

ns
ta

bl
e

ph
as

es
〈∆

s〉
U

(1
5)

0
.2

8
0

0
.3

2
6

0
.3

0
9

0
.3

6
6

24
A

ve
ra

ge
r.m

.s
.d

ev
ia

tio
n

in
un

st
ab

le
ph

as
es

〈σ
〉 U

(1
5)

0
.1

4
8

0
.1

6
0

0
.1

6
1

0
.1

8
5

25
A

ve
ra

ge
ch

an
ge

in
r.m

.s
.d

ev
ia

ti
on

(τ
≥

5
0

)
〈δ

σ
〉 S

(1
7)

−0
.0

5
0

−0
.0

6
2

−0
.0

6
0

N
/A

26
A

ve
ra

ge
r.m

.s
.d

ev
ia

tio
n

(τ
≥

5
0

)
〈σ

〉 S
(1

7,
14

)
0
.1

1
0

0
.1

0
1

0
.0

9
3

N
/A

330 Evolutionary Computation Volume 15, Number 3



Crossover and Evolutionary Stability

Note that in Table 4 and later on in our subsequent discussion, standard deviations
on population-averaged and/or run-averaged mean values are only listed when the
corresponding statistical distribution of the quantity being averaged is at least roughly
symmetrical about the mean; this is in general true for raw score measures (discussed
in §4.1), but not for lifetime distributions (§4.2) or heterogeneity measures (§4.4).

We also ran the same simulations with noise in the interpretation of the strategies.
Strategies were rarely making mistake when reading the last node of their path in the
binary tree (1%). The main results did not change.

4.1 Score Measures

Is crossover useful in evolving high-scoring deterministic strategies in the context of the
IPD? Axelrod (1987) originally answered “yes” to this question , but his simulations
were only run over 50 generations. In all likelihood, what he observed is the better
initial exploration of parameter space carried out through the use of crossover, so that
good strategies emerge faster. This is indeed a very useful thing, and is in line with
Holland’s building block hypothesis. Because our simulations were carried over a great
many more generational iterations, we are in a position to answer a somewhat different
set of questions.

In the long run, is crossover helping to produce and sustain higher scores than in
its absence? Consider first the run-averaged best score:

〈s〉 =
1
N

N∑
i=1

s(i) , (4)

where N (= 2.5 × 106 here) is the number of generational iterations. Line 8 of Table
4 lists values for this quantity, along with r.m.s. deviations about the average, in our
four baseline simulations. Crossover does not seem to have any statistically significant
effect here. A related but distinct score measure is the simulation-averaged mean score
for the entire population, rather than the best performing member at each generational
iteration:

〈s〉 =
1
N

N∑
i=1

s(i) =
1

MN

N∑
i=1

M∑
m=1

sm(i) . (5)

In the function optimization context, some authors have noted that while crossover
does not seem to improve significantly the maximum fitness, it does lead to a significant
increase in the population-averaged fitness (see Spears (1993) , and discussion therein).
For the four simulations of Table 4, these run-averaged mean scores are again all well
within each other’s r.m.s. deviations (see Line 9 on Table 4). This indicates that in
the present context, crossover has indeed very little overall influence on global score
measures.

When these score measures are computed for stable and unstable phases sepa-
rately, one clear pattern does emerge. Both the run-averaged best score and the run-
averaged, population-averaged mean score are significantly higher in stable phases
than in the intervening unstable epochs, a trend present in all four baseline simulations
(cf. Lines 15-16 and 17-18 in Table 4). It pays to be stable, for the best strategy as well
as for the population as a whole. While this suggests distinct evolutionary dynamics
in stable and unstable phases, once again crossover does not seem to have a significant
direct effect, as all score measures and associated standard deviations are similar in all
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four simulations except for the average mean score in the stable phase of simulation 4
that is marginally lower than the three other simulations (cf. Line 17 in Table 4).

Extreme values of disruption probabilities (cf. Line 3 in Table 4) correspond to ex-
treme values of performance measures related to score in Table 4 (cf. Lines 8-9 and
15-18). These entries show that the lowest disruption probability (Simulation 2) yields
the highest scores, while the highest disruption probability (Simulation 4) produces the
lowest scores. Although this observation is not a rule, as can be seen from intermedi-
ate disruption probability (Simulation 1 and 3) and standard deviations, it resembles
the pattern observed by Ishibuchi and Namikawa (2005) on the effect of mutation and
crossover on the percentage of mutual cooperation, a surrogate measure for score.

4.2 Stability Measures

Is crossover perhaps favoring evolutionary stability? To answer this question we first
consider the fraction φ of the whole simulation spent in stable phases, as identified
above:

φ =
1
N

K∑
k=1

τk. (6)

Here an interesting difference emerges. Restricting the analysis to stable phases having
τ ≥ 5, one finds that in simulation 1, 47% of the simulation is spent in stable phases.
This fraction falls slightly to 45% when crossover is turned off (simulation 2), the fall
continues to 32% in simulation 3 which has identical disruption probability at breeding
than simulation 1, and drops to 5% in simulation 4 where the empirical distribution
probability its equivalent to simulation 1 (see Line 10 in Table 4).

Broadly speaking, two explanations can be put forth here. Either crossover in-
creases the duration of stable phases, or it decreases the duration of unstable phases
(or both). To disentangle these possibilities, we begin by constructing the probability
distribution function (PDF) of stable phase lifetimes, f(τ), i.e., the fraction of lifetimes
that have values lying between τ and τ + dτ . This is quite straightforward once a list
of lifetimes τk (k = 1, ..., K) has been extracted from a given time series, as described
in §3. The results of such an exercise are shown on Figure 3, for the four baseline simu-
lations of Table 4. The distributions have been constructed for logarithmically constant
binsizes, to reduce the statistical noise level in the distributions’ tails, where they most
differ.

The mean durations of stable phases are computed by integrating their corre-
sponding PDF:

〈τ〉 =
∫

f(τ)τdτ

(
≡ 1

K

K∑
k=1

τk

)
, (7)

and are indicated by symbol-coded vertical line segments on Fig. 3. At equal disruption
probability (Simulation 1 versus 3), stable phases last about 20% longer on average
when crossover is present. At equivalent empirical disruption probability (Simulation
1 versus 4), stable phases are almost twice longer when crossover is present. This is a
significant difference, but insufficient to explain all the aforementioned differences in
time spent in stable phases. One must then conclude that less time is spent in unstable
phases when crossover is present. This is readily verified upon computing the PDFs
f(∆τ) of unstable phases durations ∆τ . These are simply defined as the number of
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Figure 3: Probability distribution functions f(τ) for the lifetimes (τ ) of stable phases, in
the four baseline simulations of Table 4 (•, �, �, ∗ for simulations 1, 2, 3, 4, respectively).
The dotted line is an exponential PDF, i.e., f(τ) ∝ exp(−τ/τ0), fitted to the first three
data points of simulation 1. The horizontal position of the symbol-coded vertical line
segments indicate the mean values of the corresponding PDFs.

iterations between the end of one stable phase and the beginning of the next:

∆τk = jk+1 − (jk + τk) , k = 1, ..., K − 1 . (8)

where jk is the iteration marking the beginning of stable phase k (of duration τk). Fig-
ure 4 shows the PDFs for this quantity in our three usual simulations, in the same for-
mat as for the PDFs of stable phases lifetimes presented on Fig. 3. Mean values 〈∆τ〉,
computed via equation (7) with ∆τ replacing τ , are listed on Line 14 of Table 4. Note
how, at equal disruption probability (simulations 1 vs 3), crossover at pc = 0.7 nearly
halves the mean duration of unstable phases, and still reduces it significantly (∼ 15 %)
at fixed mutation probability (simulations 1 vs 2). At equal empirical disruption proba-
bility (simulations 1 vs 4), the unstable phases more than seven times longer than with
crossover. Even if the distributions of simulations 1, 2 and 3 look similar to the eye on
this log-log plot, they do differ significantly. The p-value of a Kolmogorov-Smirnov test
associated with all combinations of comparison are lower than 10−6, so the hypothesis
that the distributions come from the same function can be rejected. To outline the dif-
ference of the distributions functions of unstable phase lifetime, the Q-Q plot is used
to amplify the difference on the tail of the distributions, it is the representation of the
quantiles of the first distribution against the quantiles of the second distribution (Law
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Figure 4: PDF of unstable phase durations, for our four baseline simulations. The hori-
zontal position of the symbol-coded vertical lines segment indicate the mean duration
of unstable phases for each of the three PDFs. This mean value for simulation 2 (with-
out crossover) is 20% higher than for simulation 1 with pc = 0.7 (18 iterations, versus 15
when crossover is included), and a little over 50% larger at equal disruption probability
in simulation 3 (�). The mean value in simulation 4 (∗) is more than 700% larger than
in simulation 1 (108 iterations versus 15).

and Kelton, 2000) (Fig. 5). There is a difference between all tree simulations, since none
of the Q-Q plot are following the dashed line representing two distributions from the
same function.

One might conclude that this is a direct consequence of crossover’s enhanced ex-
ploratory capability through building block assembly. After the appearance of an adap-
tively targeted predator, the formerly stable population is rapidly decimated, which is
followed by the equally rapid demise of the targeted predators, since these are typ-
ically not particularly good at playing IPD against one another. Recovery to a new
stable phase must happen through the discovery (or rediscovery) of another evolution-
arily (meta)stable strategy. Crossover can in principle accelerate this recovery process,
for example by allowing different types of “jumps” through strategy space (one of
crossover’s secondary role, according to Holland, cf. §1), and/or recombining build-
ing blocks, if some are present in the problem space (crossover’s most important role,
again according to Holland).

Examination of time series such as on Fig. 2 reveals that many stable phases seem
to have similar mean scores (such as A and C on Fig. 2). First define a plateau-averaged
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Figure 5: QQ-plot compares the quantiles of two distribution. If both distributions are
the same, all points fall on the dashed line. Here we compared the distributions of
unstable phase lifetime. All distributions have significant differences on their tails and
failed a Kolmogorov-Smirnov test with a p-value less than 10−6.

best score 〈s〉k over the duration τk of the kth stable phase beginning at iteration number
jk:

〈s〉k =
1
τk

jk+τk−1∑
i=j

s(i) , k = 1, ..., K (9)

where, as before s(i) ≡ max(s(i)) is the time series of best score (cf. Fig. 2). Figure 6
shows PDFs of this quantity, for our three baseline simulations. Remarkably, all four
PDFs are peaking at 2.5, which is the mean score of a series of alternate cooperation-
defection out of synchrony ( T+S

2 = 2.5). Another peak is common for all simulations
just below 3.0 (the mutual cooperation reward), although simulation 4 barely shows
this peak. Instead, simulation 4 has peaks at 2.5 and 2.25 the mean of two strategies
that cooperate half the time without any consideration for the previous moves (0.25S +
0.25P + 0.25R + 0.25T = 2.25). We will refer to those scores as the combination of
strategies that generate them, even if more complicated sequences can create the same
outcome. Other peaks can be found below 2.4 and at 2.6, but they do not represent
any particular set of strategies. In every simulation most of the stable phases are either
close to mutual cooperation or alternate cooperation-defection out of synchrony.

Interestingly, there are no stable phases above 3.0. In other words, the exploita-
tion of cooperators cannot be stable. The predator, can exploit cooperators, but won’t
last more than 4 iterations, which is less than the takeover time. As soon as a preda-
tor invades the population, no stable phase is possible. Stable phases are only present
for best score between 2 and 3, so mutual punishment or exploitation of cooperators
cannot be stable (Fig. 6). From figure 6, we see two major families of outcomes: an
alternate sequence of cooperation-defection (C-D) out of phase (2.5) and mutual coop-
eration (3.0). Simulation 1 spent most of its stable phases in the alternate sequence of
C-D outcomes. Simulation 2 and 3 spent more of their stable phases in the mutual co-
operation regime. Between the two major families, there is a gap below 2.8 where no
stable phases exist. This breaking point separate mutually cooperative outcomes from
the others. Strategies jump between the families after a perturbation occurs.
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Figure 6: PDF of best score averaged over individual stable phases (see equation 9), for
the four baseline simulations. The dashed vertical line indicates the expected score for
TFT playing IPD against another TFT.

4.3 Joint Score-Lifetime Distributions

The averaged best scores in stable phases listed in Table 4 (Line 15) cannot be extracted
from the PDFs plotted on Fig. 6 simply because stable phases do not have the same
duration τk . These discrepancies, however, are an indicator of correlations between
lifetimes and scores averaged over stable phases. Figure 7 is a scatter plot of the pairs
(〈s〉k, τk) for all stable phases. Note how long-lifetime stable phases (τk ≥ 10, say) tend
to clump in fairly distinct families, each with distinct score-lifetime correlations. This
indicates that there exist a finite number of evolutionarily metastable strategies, and
that it tends to be preferentially one or the other of these strategies that keep being dis-
covered by the evolutionary process, only to be wiped out again once strategy-specific
predators emerge, and reappear at some subsequent time once those predators have
driven themselves to extinction by obliterating their prey.

This suggests that the evolving population achieves evasion from targeted adap-
tive predation by rapidly evolving from one metastable strategy to another as prey-
specific predators appear in the simulation. Appearance of such predators is thus the
primary trigger behind the large-scale evolutionary patterns observed in the simulation
(recall, cf. Fig. 2, that most long-lifetime stable phases end up with a marked upward
“spike” in the best-mean-score, indicative of the appearance of a strategy that does
very well against other members of the current population). The fact that unstable
phases are of significantly shorter duration when crossover is included in the simula-
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Figure 7: Distribution of stable phase characteristics plotted in the averaged best
score+lifetime plane for the four baseline simulations with noise. The dashed verti-
cal line again indicates the expected score for TFT playing IPD against another TFT.
The highly inhomogeneous grouping of points is quite striking.

tion (cf. Fig. 4 and Table 4) further suggests that recovery to a new stable phase is
more efficiently carried out by recombining appropriate building blocks having sur-
vived through the predatory phase and now scattered across the population, than by
sequences of bit-flip mutations.

Even if the stable phases of the first three simulations are almost equally split be-
tween 2.5 and 3.0 points, the duration of the stable phases has a positive bias for mutual
cooperation (Fig. 7). The mutual cooperation range in this study is 3.0 ± 0.2 and the
others are from 0.0−2.8 and 3.2−5.0. In every simulation, even simulation 4 where the
number of stable phases is small compared with the three others, the mean duration
of mutual cooperation stable phases achieve longer duration (Line 12-13, Table 4). At
equal disruption probability and empirical disruption probability, crossover is inflating
the duration of stable phases for every type of stable phases: mutual cooperation and
other stable phases.

Crossover is thus enhancing evolutionary stability in two ways: first, it accelerates
the recovery of stability after the spread and subsequent demise of adaptively targeted
predators, by reassembling building blocks still present in the population. Second, dur-
ing evolutionary stable phases it also impedes the appearance and spread of adaptively
targeted predators. While the former role is readily understood in terms of building
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block assembly, the latter is not. Moreover, for crossover to assemble building blocks
in a productive manner, a variety of these must be present in the population, which, in
turn, requires genotypic diversity. We now turn to this issue.

4.4 Population Heterogeneity and Evolutionary Stability

Recombination by one-point crossover only has a net effect if it operates on two parent
strings that differ by at least two bits. In the present simulations, crossover was found
to have an important effect on the duration of unstable phases, and a smaller yet still
significant effect on the duration of stable phases. This implies that a significant level
of variability must still exist in the population even at the end of a long stable phase.

Population heterogeneity can be measured in a number of ways in our simulations.
In keeping with the spirit of working only on “phenotypic” characteristics (rather than
scrutinizing the population at the genotypic level), we measure heterogeneity in terms
of two score-related quantities. The first is simply the score difference ∆s between the
best and median individual at each generational iteration:

∆s(i) = Max[ s(i) ] − Med[ s(i) ] . (10)

The second is the r.m.s. deviation σ about the mean population score at each iteration:

σ(i) =

√√√√ 1
M

M∑
m=1

(sm(i) − s(i))2. (11)

These quantities can then be numerically averaged over the whole simulation (〈∆s〉,
〈σ〉), over individual stable phases (〈∆s〉k, 〈σ〉k), or over all stable or unstable phases
(〈∆s〉S, 〈∆s〉U, etc), e.g.:

[
〈∆s〉, 〈σ〉

]
=

1
N

N∑
i=1

[
∆s(i), σ(i)

]
, (12)

[
〈∆s〉k, 〈σ〉k

]
=

1
τk

jk+τk−1∑
i=jk

[
∆s(i), σ(i)

]
, (13)

[
〈∆s〉S, 〈σ〉S

]
=

1
φN

K∑
k=1

jk+τk−1∑
i=jk

[
∆s(i), σ(i)

]
, (14)

[
〈∆s〉U, 〈σ〉U

]
=

1
(1 − φ)N

K−1∑
k=1

jk+1−1∑
i=jk+τk

[
∆s(i), σ(i)

]
, (15)

where the same notation as in equation (9) is used to identify the beginning (jk) and
duration (τk) of the K stable phases (Note again that equation (14) is not the same as
computing the average of the K values for 〈∆s〉k , which would give equal weight to
all stable phases independently of their lengths).

Numerical values for some of these quantities are listed in Table 4, Lines 19-24.
At equal disruption probability (simulations 1 vs. 3 and 1 vs. 4), the most significant
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systematic variation is found for the averaged score difference 〈∆s〉 (Lines 19, 21, and 23
in Table 4), where crossover is found to reduce population heterogeneity by some tens
of percent, the drop being most pronounced when only stable phases are considered
(∼ 30%; cf. Line 21). Examination of the PDFs for the stable phase score differences
〈∆s〉k (not shown) reveals differences in details, yet all four simulations indeed show
similar distributions of score differences. Globally, crossover is only having a minor
effect on population heterogeneity.

How is heterogeneity varying in the course of a given stable phase? To address
this question we consider sequences of time series of r.m.s. deviations σ(i) about the
population-wide mean scores s(i). Figure 8 shows a sequence of time series for the
quantity

δσ(i − jk) = σ(i − jk) − σ(jk) , i = jk, ..., jk + τk , (16)

i.e., the change in σ during stable phases, with the zero point reset each time at the
beginning of each of the stable phases. The corresponding time series, plotted on Fig. 8,
are extracted from simulation 3 and are now restricted to stable phases of duration
τ ≥ 50 iterations to avoid overcrowding. A 10-iteration-wide boxcar filter was also
applied to each time series, since the original series defined by equation (16) turned out
to be rather noisy.

At first glance there appears to be little trend in the evolution of the r.m.s. deviation
σ in the course of stable phases; closer examination reveals, however, that significantly
more time series end up below than above zero (112 vs. 38 here). One can also compute
an average beginning-to-end difference:

〈δσ〉S =
1
K

K∑
k=1

(
σ(jk + τk) − σ(jk)

)
, (17)

which turns out to be systematically negative, but remains a small fraction of the mean
r.m.s. deviation, in all first three baseline simulations (see Lines 25 and 26 in Table
4). In simulation 4 there are no stable phases of 50 iterations or more, we used the
notation N/A for non applicability of the measures for this specific simulation. Turn-
ing crossover on or off at fixed mutation probability (simulations 1 vs. 2) has little
influence here. Interestingly, in these subsets of long stable phases the run including
crossover (simulation 1) shows the highest averaged r.m.s. deviation, although it is
unclear whether the difference, of about 10%, is statistically significant.

What is quite striking as well as significant is that even in stable phases lasting a
few hundred iterations, population heterogeneity remains at a more or less constant
level despite an expected takeover time of less than 10 iterations. The longest stable
phase observed was in simulation 2 and lasted 410 iterations; yet in this instance the
population-wide average deviation ended up slightly larger than at the beginning of
that stable phase (〈δσ〉k = +0.02).

This general trend of more-or-less constant population-wide r.m.s. deviation also
characterizes the other three baseline simulations, and thus represents a clear indication
that sustained heterogeneity is an essential component of the evolutionary dynamics in
these simulations. Support for this conclusion is found in simulations carried out with
higher selection pressure (η = 10), which show even slightly higher levels of population
heterogeneity, at least by the two measures used here.

Such persistent heterogeneity is remarkable in a number of ways. Recall that our
population reproduction scheme begins by isolating the η = 20 best performing strate-
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Figure 8: Time series of r.m.s. deviation changes during stable phases of duration τ ≥
50 iterations in simulation 3. Each time series was smoothed via a 10-iteration-wide
boxcar filter to reduce the noise to visually manageable levels. The thick line is the time
series of average change out to 80 iterations, indicating a weak but systematic trend
towards decrease in r.m.s. deviations. The mean r.m.s. deviation for this subset of 150
stable phases is 0.093, so that the average change from beginning to end of each plateau
(equation 17) represents a fairly small (∼ 18 %) decrease in population heterogeneity,
even in this subset of very long stable phases.

gies at a given iteration (out of a population size M = 100), and breeds the next gener-
ation only from this subset. This represents very strong selection pressure. Because our
GA operates at fairly low mutation probability, diversity can only be maintained if the
“top-twenty” breeding subset is itself diversified, which in turn implies that multiple,
distinct mutually cooperating strategies coexist through stable phases.

From an ecological point of view, the simulations can be regarded as equivalent to
a complex “ecosystem” characterized by interacting “communities” of mutually coop-
erating strategies. In such a diversified, evolutionary (meta)stable population, targeted
adaptive predators can perhaps decimate their prey strategy, but being prey-specific
they have greater difficulty destabilizing the whole population. Even when they do,
there remains a greater chance that useful building blocks are still passed on to subse-
quent generations through the end of the predatory phase, and may be available for
crossover to recombine, and help “resurrect” former stable strategies. Heterogeneity
thus enhances evolutionary stability in two ways: (1) It makes the population as a
whole more resistant to targeted adaptive predators, and (2) it enhances the survival
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of useful building blocks during stable phases as well as across unstable epochs. The
greater overall stability of simulations with crossover indicates that it can take advan-
tage of this heterogeneity in a manner that (by all appearances) cannot be duplicated
by one-point bit-flip mutations alone.

5 A Conjecture: Long-Range Correlations and Evolutionary Memory

Consider a hypothetical, simple and memoryless evolutionary procedure driven by a
stationary random process. For example, one could construct a time series of num-
bers rk extracted from a normal (Gaussian) distribution, and declare that the system
remains stable until rk exceeds some externally-set threshold. Under these conditions,
it is readily shown that the resulting PDF of stable phase lifetimes is exponential, i.e.,
f(τ) ∝ exp(−τ/τ0). This is the distribution plotted as a dotted line back on Fig. 3, with
τ0 adjusted to fit the first three bins of the reference simulation.

The PDFs of stable phase lifetimes plotted on Fig. 3 are clearly non-exponential,
and, in particular, exhibit a “fat tail” at large lifetimes. This is indicative of some “mem-
ory”, or, more accurately, temporal correlations, in the evolutionary process. This is in
fact not surprising at all, in view of the descent-with-modification nature of the GA:
successive generations are correlated, and here we can actually expect the correlation
to be quite high given the high selection pressure embodied in our tournament selec-
tion procedure.

These correlations are slowly but inexorably destroyed by mutation. Referring
back to Fig. 3, we notice how the tails of the PDFs for simulations 1 and 2 (mutation
probability pm = 0.0159) fall more slowly and extends farther than for the PDF of simu-
lation 3 (pm = 0.0345). Crossover, on the other hand, redistributes building blocks and
therefore does not destroy temporal correlations in the population as a whole, at least as
far as building blocks of short defining lengths are concerned. Evidence for this claim
can be found in the essentially identical tails of simulations 1 and 2, both having the
same mutation probability but crossover turned off in the second. Yet simulation 1 has
a markedly higher probability of disruption at breeding. While individual population
members differ more on average from their parents in simulation 1 than in 2, at the
level of building blocks (or, loosely speaking, the “gene pool”), both simulations collec-
tively show the same collective average change in the population from one generational
iteration to the next.

On this basis, we conjecture that crossover is sustaining genotypic correlations in
the evolving population more efficiently than mutation, while allowing comparable
adaptive evolutionary change from one generation to the next. In a static evolutionary
environment (such as function optimization), this would amount to lesser diversity,
and might well prove deleterious. In the evolutionarily dynamical environment offered
by the IPD, such correlations are advantageous, as they allow the efficient re-assembly
of metastable strategies from surviving building blocks scattered in the population fol-
lowing destabilization by adaptively targeted predators.

6 Concluding Remarks

The conjecture put forth in this paper, on the basis of an evolutionary study of the Iter-
ated Prisoner’s Dilemma, is that crossover recombination sustains long-range tempo-
ral correlations in an evolving population more efficiently than purely mutation-driven
adaptive descent-with-modification, which then leads to overall greater evolutionary
stability.
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Long timescale evolutionary patterns qualitatively resembling “punctuated equi-
librium” arise in the simulations as the population rapidly evolves from one of a
few possible metastable strategies to another, in response to the appearance of adap-
tively targeted predator strategies. Crossover plays an important role in these transient
phases, where recombination of building blocks apparently favors an efficient search
for a new metastable strategy while predators drive themselves to extinction: In the
absence of crossover, unstable phases last 50% and 700% longer than when crossover is
included (for pc = 0.7 and at equal breeding disruption probability and empirical dis-
ruption probability respectively). This is particularly remarkable in view of the very
high selection pressure characterizing our adopted tournament selection algorithm,
characterized by a takeover time of only 6 generational iterations. Crossover is not
just assembling building blocks; it is evidently finding and assembling them very effi-
ciently.

Persistent population heterogeneity, in the form of coexisting families of cooperat-
ing strategies is a vital factor in impeding the spread of adaptively targeted predators
throughout stable phases. This makes it more difficult for an adaptive predator to wipe
out the whole population through the use of an exploitive predatory strategy targeted
to a specific prey-strategy (such as ATFT exploiting TFT’s “start off nice” feature). The
simulations discussed here indicate that crossover-mediated recombination can exploit
this heterogeneity and also ensures that building blocks defining mutually cooperating
strategies survive longer in the population, making it more likely that such strategies
are rapidly rediscovered after evolutionary stability has been lost. We have argued
that this survival of building blocks dispersed in the population is the origin of the
long temporal correlations evidenced by the extended tails in the PDFs of stable phase
lifetimes.

Whether these results can be generalized to dynamical evolutionary environments
other than the IPD remains to be demonstrated. Recent studies of the geological fos-
sil record have revealed extended tails —often in the form of more-or-less convincing
power laws— in the lifetimes of various species and taxa (see, e.g., Sepkoski (1993), and
references therein). This has sometimes been taken as evidence that biological evolu-
tion may be a self-organized critical phenomenon (Solé and Manrubia, 1996; Jan et al.,
1999), although other non-critical, simple and plausible power-law generating schemes
have also been proposed in the evolutionary context (Newman, 1996). The simulation
reported herein illustrates yet another means of producing extended tails in lifetime
distributions, through the long-range correlations sustained by crossover.
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