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Abstract

We show that it is possible with easy-to-program algorithms to reach spatial resolutions of the oro‘%gdﬁnbints for
computing the electric potential on 2D periodic lattices, such as tEL8i7 x 7 surface. We have used a spectral Fourier
technique and parallelized FFTs with OPEN_MP on SGI machines. This method can be easily extended to 3D.
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1. Introduction Probe Microscopy and related techniques. Strong cor-
relation between the topography and potential has
The Poisson—Laplace—Boltzmann equation has uni- been noticed [12]. $111)7 x 7 is a very complex and
versal applicability, ranging from gravity [20] and ma-  fascinating crystal, although the actual surface actu-
terial physics [1,5] to biochemical studies [10,18,22— ally consists of three layers [2]. Defects have been ob-
24]. served on surface maps of 60 60 nm [9] using
The simulation or imaging of nano to meso-scale AFM. Phonon propagation is another example of large
phenomena on crystal lattices requires very high reso- scale patterns, having been recently observed on var-
lution. An example is given by the surface potential of joys surfaces such as LiF and TeO2 surfaces at least
inorganic crystals. Surface topography can be mappedof the order of 150« 150 un? [21]. Starting from a
outby using Atomic Force Microscopy (AFM), Kelvin - charge distribution field, to compute surface potential
associated with a map would requiredgid points for

* Corresponding author. each atom and thus of the order of 1 million grid points
E-mail addresses: thibert@cerca.umontreal.ca in each direction!
(X Thibert-Plante), davey@msi.umn.edu (D.A. Yuen), There are many numerical techniques for solv-
" URES hip miceroa umoneal @, ThibertPlante), N9 the Poisson-Laplace—Boltzmann equation: Monte
http://www.msi.umn.edu/~daveyD.A. Yuen), Carlo technique [25], multigrid [26], multipole [7],
http://mww.phys.umontreal.céA.P. Vincent). Fourier spectral [3], splines [15], finite volumes [11].
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A review is given in [8]. In this paper we focus only moment FFT pack may be perhaps one of the fastest
on the Poisson equation with applicability in surface FFTs available in the public domain. The algorithm
chemistry and nanosciences. Periodic boundary con-that we developed for computing 2D fully periodic
ditions on a 2D Cartesian plane have relevance in real-complex FFT, while using Swartztrauber's 1D
modelling a crystal lattice. In this case the Fourier complex-complex FFT as a black box, is shown in
spectral technique provides the fastest and most ac-Algorithms 1 and 2. Parallelization makes use of the
curate solution. The Laplacian operator is diagonal OPEN_MP packageh(tp://www.openmp.org/ We
and the algorithm is straightforward. Spectral filters did not parallelize the 1D FFT but put in paralleliza-
[6] can be used for the treatment of local disconti- tion only in the loops of our 2D FFT. There are sev-
nuities (here defects or meso-scale faults in crystals) eral parallel FFTs available currently in the public do-
whereas the case of a globally non-periodic lattice main (e.g., FFTW from MIT:http://www.fftw.org/).
(large inclusions) can be processed with global Fourier Our point is to show that we can use any 1D non paral-
windows [16]. lel FFT without changes and build a parallel 2D or 3D
In the next section we describe the algorithm for FFTs with extremely simple algorithms, while having
parallelizing 2D FFTs loops and for solving the 2D surprisingly good performances.
periodic Poisson equation. Next we show how with The output arrays of Fourier modg%l?) is shown
a modest shared-memory computer, such as the SGlin Fig. 1 in the space of Fourier wavevectoks, ky).
with 16 processors one can easily reach resolutions The Hermitian property
up to 20,000 grid points along each direction. We il- ., R
lustrate this capability with an example taken from fo ks ky) = f (—kx, —ky)
the treatment of numerically constructed lattice of acts on the first indicg, here.
Si(111)7 x 7 with random defects. In the last sec- The machine we have used is a Silicon Graphics
tion we discuss open problems such as generaliza-SGI Origin 3800 with ninety six 500 MHz MIPS
tion to elliptic equations with variable coefficients, ex- R14000 Processors with each CPU having a 8 MB
tension to three dimensions or surfaces with internal secondary cache and a total shared memory size
boundaries.

ky
A
2. Algorithms Ny/2

2.1. Asmple 2D parallel FFT

The two-dimensional real-complex symmetric
(RCS) Fourier transform is:

=)0 flke kyebrdh, @)

ke ky

where i= /-1, the summation is taken overn,/ \
2+1<ky < Ny/2and—Ny/2+ 1<k, < Ny,/2 with NN NN
N, and N, being tbe number of grid points in the \\\\ \\\
x andy directions,k = (k,, k) is the Fourier wave N \ \\\
vector. f*(k) = f(—k) is the complex conjugate of \\\\\X\\x\\
f (k). This last Hermitian condition ensures that the §\\\\\\§§\\§\\\\\\
sum is real. Ny/2 — -
We started from a 1D complex-complex Fast

Fourier Transfornfttpack written in Fortran 77 by Fig. 1. output of the real complex symmetric (RCS) FFT in the
Paul Swartztrauber of the National Center for At- space of Fourier wavevectoks= (., ky). Hermicity plays on the
mospheric Research at Boulder Colorado [19]. At the first component, here.

N\
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Require: realx[Ny][Ny]
integer i, j,Nx, Ny
complex XcomplekNy ][ Ny], tmpH[Ny 1, tmpV[Ny]

Ensure: x[N,][Ny] = Real-Complex-Symmetric Fourier transformgiVy ][Ny ]
OMP PARALLEL DEFAULT(NONE) PRIVATE(i, j, tmpH[])
OMP SHAREDIX[ ][ 1, Xcomplex{ 1[ ], Ny, Ny)

OMP DO
for 1<i < Ny do
for1<j < Nydo
tmpH[j] = coplx(x [ ][], 0)
end for
1D Swartztrauber (FFTpack) Fourier transforntrmpH with is own
copy of the working array
for 1< j<Nydo
Xcomplex(i][j] = tmpH[ ]
end for
end for
OMP ENDDO
OMP END PARALLEL
OMP PARALLEL DEFAULT(NONE) PRIVATE(, j, tmpV[])
OMP SHARED(X[][1, Xcomplex[][], Nx, Ny)
OMP DO
for 1< j<Nydo
for 1<i < N, do
tmpV[i] = Xcomplex[i][;]
end for
1D Swartztrauber (FFTpack) Fourier transforntrmopV with is own
copy of the working array
for 1<i < Nyx/2do
x[2i — 1][j] = real (tmpV/[i])
x[2i][j] = imag(tmpV([i])
end for
end for
OMP ENDDO
OMP END PARALLEL

Algorithm 1. Forward Fourier transform.

of 144 GB for the system, which is located at the the spectral Fourier space, the solution of the Poisson
University of Minnesota Supercomputing Institute in equation in spectral space takes the form:
Minneapolis, Minnesota.

5 A 2

2.2. Spectral Fourier Poisson solver Pl ky) = =4 (ke k) /K 3
If there is no mean zero mode= (0,0), a simple
division by k2 is sufficient (Algorithm 3). The entire
algorithm consists first in a direct FFT from physical
space to spectral space. Then this is followed by a
whereA is the Laplacian operatoP, = P(x, y) is the division by k% and then an inverse FFT from the
potential and; = ¢ (x, y) is the charge density field. In  spectral space back to the physical space.

We want to solve:

AP =gq, (2
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Require: realx[Ny][Ny]
integer i, j, Ny, Ny
complex XcomplekNy ][Ny ], tmpH[Ny ], tmpV[Ny]
Ensure: x[Ny][Ny] = Real-Complex-Symmetric Fourier transformgiV, ][ Ny]
j<1
tmpV[1] = cmplx(x[1][;]1, x[2]Lj]1)
for 2<i < Ny/2do
tmpV[i] = cmplx(x[2i — ][], x[2]1[7 D
tmpV[ Ny — i + 2] = cmplx(x[2i — 1]1(j1, —x[2i1(j1)
end for
tmpV[N, /2 4+ 1 = cmplx(0, 0)
1D Swartztrauber (FFTpack) Fourier transforntrmopV
for 1<i < Ny do
Xcomplex[i][j] = tmpV[i]
end for
OMP PARALLEL DEFAULT(NONE) PRIVATE(, j, tmpV[])
OMP SHARED(X[][], Xcomplex[][], Nx, Ny)
OMP DO
for 2< j < N, do
tmpV[1] = cmplx(x[1][], x[2][F ]
for 2<i < Nyx/2do
tmpV[i] = cmplx(x[2i — 11[ ], x[21[; 1)
tMpV[Ny — i + 2] = cmpIx(x[2i — 1][Ny — j + 2], —x[2{][Ny — j + 2])
end for
tmpV[N, /2 + 1] = cmplx(0, 0)
1D Swartztrauber (FFTpack) Fourier transforntrmpV with is own
copy of the working array
for 1<i < N, do
Xcomplex[i][j] = tmpV[i]
end for
end for
OMP ENDDO
OMP END PARALLEL
OMP PARALLEL DEFAULT(NONE) PRIVATE(, j, tmpV[])
OMP SHARED(X[][], Xcomplex[][], Nx, Ny)
OMP DO
for 1<i < Ny do
for 1< j<Nydo
tmpH[,j] = X complex[i1[,]
end for
1D Swartztrauber (FFTpack) Fourier transforntrmpH with is own
copy of the working array
for 1< j<Nydo
x[i][j] = real (tmpH[j])
end for
end for
OMP ENDDO
OMP END PARALLEL

Algorithm 2. Backward Fourier transform.
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Require: real p[Ny1[Nyl, g[Nx1[Ny] the number of processors and is particular to each ma-
integer i, j, Ny, Ny chine.
Ensure: Poisson solution Memory use is another important consideration to
for 1<i < Ny/2do take into account. FrooW, = N, =8to N, = N, =
for 1<j < Nydo 2048 memory increases liké3, above this value it is
k2 = k2(i) + k2(j) proportional toN, x N, (the size of an array). Above
if k2 > 0 then N, = 2048, the RAM memory is increased in our case
pl2i — 1[j1=—ql2i — 1111/ k? (Fig. 4) because OPEN_MP duplicates the arrays in
pl2i11j1 = —q[2111j1/ K each processor. The value 2048 is in 32 bits words,
end if which can be fit within the capacity of the secondary
engnfirfor cache whose size is 8 Mbytes in the case of the SGI

machine. Another limitation was the RAM memory
of the machine. It is possible to go to resolutions of

Algorithm 3. Poisson solver.

10 ——————rry ]
3. Results I ]
3.1. Performance a
>
gl
The number of arithmetic operations in Fast Fourier g
Transform is proportional t&vV log,(N). The elapsed @ |
wallclock time in seconds is displayed in Fig. 2. As
expected, the time scales likélog,(N). At a given
resolution, the speed-up factor is defined as: 1 L :
_ (Elapsed TimeN Prog @ 1000 10000 100000
~ \_Elapsed Timél Prog Number of grid points

and is shown in Fig. 3. For 8 processors, it is about 6 Fig. 3. At a given grid resolution, the speed-up (SU) is im-
and this represents an appreciable improvement. HOW-proved with the number of processoisbproc but saturates
ever, the speed-up saturates above about 16 procesaroundNbproc~ 16. Here,SU = (Elapsed TimeV Prog/Elapsed
sors. This is due to an increase of the bus traffic with Time(1 Proo).
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] o 32 proc 1 1 b T 32 plloc,l o
1000 10000 100000 1000 10000 100000

Number of grid points Number of grid points

Fig. 2. Elapsed wallclock time (second) versus the number of grid Fig- 4. RAM Memory versus the numbgr of grid points. Up to
points N, = N, is shown here from 1 to 32 processors. The time Nx = Ny = 2048, memory increases likg*, above this value this

is proportional toN logy(N), as expected with the Fast Fourier  iS proportional toN? (the size of an array). The valué = 2048 in
Transform. 32 bit words gives 8 Mbytes, the size of the cache on the SGI.
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Fig. 6. Comparison between Gauss—Seidel Multi-Grid, SOR and
Fig. 5. Performance in Megaflops/sec as calculated with the soft- Spectral Fourier method on a single processor of SGI. Elapsed
ware “perfex” does not change with the number of grid points. La-  time is shown versus the number of grid points in each direction
bels refer to the number of processors. Ny = Ny. The direct spectral Fourier method is about 100 times
faster.

the order of the 100,08@yrid points, provided we do

not store the full array® (x, y) or g (x, y) in the core tries and boundary conditions, no known comparison

but only as one single column or line of the array at a has been made with the spectral algorithm.

time. Finally, the question of reaching one million of
We found that performance has been determined to grid points in each direction is an unavoidable step

be about 300 Mflops for 32 processors (Fig. 5) and in the near future in order to simulate complex large-

remains almost unchanged with the resolution. In our scale phenomena in surface chemistry, such as wave

simulations, the machine precision we use is 32 bits. propagation involving surface phonons. Here is the

This is enough for most applications. As long as only outline of an algorithm that would handle a grid of

7 digits of accuracy is required, the spectral method N, =229 x N, =220 points. Such a large matrix can-

would not introduce additional errors as would finite not be stored any longer in core of most systems; this

differences, for instance. would demand at least a terabyte of core memory. The
The spectral solver developed here is much faster solution is to decompose the matrix Bipproc x NOproc

than the Gauss—Seidel (GS) method, which needsblocks whereNbproc is the number of processors and

N; x N, iterations to obtain a digit more in improve- a power of two. To read a complete line, we need

ment of accuracy [16]. We display the comparison N, /Nbgrocreal or complex I/O “operations”. To read a

on a single processor in Fig. 6. The elapsed time is complete column, we need, /Nbproc Operations. The

shown here versus the number of grid points = procedure becomes now:

Ny in each direction. The Gauss—Seidel method is

found to be about 100 times slower than the spec- e read areal line that i8/, /Nbproc I/O operations,

tral method. The methods Successive Over Relaxation e write a complex line that is % N, /Nbproc I/0

SOR and multigrid are not any faster (Fig. 6). Com- operations,

parison with the multi-grid method has been done e read a complex column that isx2 N, /Nbproc I/O
with the free software written by David Pruett from operations,

James Madison University. Only with the use of a e write a real column that iV, /Nbproc I/O opera-
massively parallel distributed memory machine would tions.

the red-black Gauss—Seidel become competitive. Al-
though the Gauss—Seidel method has been proposediltogether we require 4« N, /Nbproc I/O operations
[26] and would be better adapted to complex geome- to carry out forward or backward FFTs. By including
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Fig. 7. Simulated charges distributions on &13il)7 x 7 lattice.
Holes have been randomly added by taking off an atom at this site.
Local charge distribution is a Gaussian function with a center at each
atom location. Spatial resolution here ¥; = N\, = 1024.

the transfer rate TR, the total I/O time is now:

Tiot = 4 (N, /nbprog + (N, /nbprog) =« AAT

+ 6% (N * Ny)/TR. (5)

Depending on the number of processors, the total time
devoted to I/O is displayed in Fig. 9. The three key pa-
rameters are the transfert rate (TR), the average acces
time (AAT) and the number of processors. Since 1990,
improvements are now down tdAT ~ 2-3 ms and

TR = 200 Mbit/sec. We would expect these numbers
to improve in the near future with the greater memory
capacity from a denser packing, thus making out-of-
core operations more competitive.

3.2. Maps of the electric surface potential

Our example is given from solid state physics with
the S{111)7 x 7 lattice [2,9]. We simulated the surface
of Si(111)7 x 7 with Gaussian Coulomb-like electric
charges and random adatoms (holes) with a probability
of 0.01. This is shown in Fig. 7. The computed electric
potential is displayed Fig. 8. Here the resolution
is Ny = N, = 1024. Large-scale variations of the

Fig. 8. Potential computed from the charge distribution of Fig. 7.
Large scale structure is due to the particular configuration of the
defects in the lattice.

: ' S 0M2 —— ]

R T — R
5 é 10MB ---oom 5
2 g 3
g - ]
< Eo_ -
£ e i
o 5 |
g 001 | E
0.001 E— —

10
Number of processors

Fig. 9. Estimates of the time spent out-of-core for the computation
of 2D periodic electric potential. We have based our estimates on
AAT =25 x 1073 seconds and TR 200 Mbit/sec. Labels refer

to the size of the lattice:# x 212 grid points (solid line), 4 x 214

grid points (dashed line) and@x 216 grid points (doted line).

potential are due to the random locations of the
vacancies. Visualization of large grids involving®10
grid points requires the use of large display device,
such as the Power Wall at the University of Minnesota
(http://www.lcse.umn.edy/
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4. Concluding remarksand work in progress This kind of spectral Fourier technigue could also
be used for the Helmholtz equation and Darcian flow
We have shown that one can reach resolutions of IN heterogeneous porous media [4]. Generalization to
the order of 10,000 grid points along each direction variable dielectric constant [13] or more general ellip-
in solving the 2D Poisson—Laplace equation with the tic problems is also possible b_ut in these_cases opera-
spectral Fourier technique. Today it is possible to go [©0'S become more complex. Finally, Fourier treatment
to still higher resolutions of up to 100,000 grid points of complex geometries or internal boundaries remains

in each direction, provided we do not set the full ar- an open question for future work.

raysP(x, y) but only deal with the lines of the matrix.
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