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The structure of interaction plays an important role in the outcome of evolutionary games. This study investigates
the evolution of stochastic strategies of the prisoner’s dilemma played on structures ranging from lattices to small
world networks. Strategies and payoffs are analyzed as a function of the network characteristics of the node they
are playing on. Nodes with lattice-like neighborhoods tend to perform better than the nodes modified during
the rewiring process of the construction of the small-world network. © 2007 Wiley Periodicals, Inc. Complexity
12: 22–36, 2007
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1. INTRODUCTION

S mall-world network structure commonly emerges in
complex systems [1]. In this study, we explore the effect
of this topology on the evolution of cooperative behav-

ior with an individual based approach, using a model in which
each node of the network is a strategy in the iterated prisoner’s
dilemma game.

Small-world networks [1] are playgrounds to study com-
plex systems. They merge a strong local dynamics with
large-scale interactions. They are between regular grids and
random networks, sharing their small characteristic path
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length with random graphs and their high degree of clustering
with regular lattices. They are associated with the concept of
six degrees of separation: there is a path connecting any two
randomly chosen people in the world with five intermediates
or less in the acquaintance network. They are also associated
with synchronized dynamics, the result of fast diffusion in
a densely connected environment [2]. The small-world net-
work topology is a good model to represent various emergent
networks like the power grid of the western United States,
the neural network of Caenorhabditis elegans, collaboration
graphs of film actors and scientists, and the process of propa-
gation of infectious disease [1,3]. Following the method of [1],
we can build a small-world network with only small modifica-
tions to a regular grid. For a grid G = (V , E) with n nodes V =
{v1, v2, . . . , vn} and m undirected edges E = {e1, e2, . . . , em}
linking two nodes ek = (vi , vj). For each ek ∈ E there is a small
probability (ρ) that one of the nodes associated with it, say vi ,
will be replaced by a random one vrand , where (vrand , vj) /∈ E .
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FIGURE 1

Boxplots of simulation characteristics as function of the rewiring probability (ρ) for memoryless strategies. Fifty percent of the simulations fall within the
vertical box. The median is represented by the horizontal line inside the box. (A) mean score, (B) position of the emergent score, (C) �tot of the emergent score,
(D) position of the emergent p, and (E) �tot of the emergent p.

The prisoner’s dilemma has become the standard para-
digm for studying the evolution of cooperation among selfish
individuals [4]. It is a simple two-player game where each
player is confronted with a choice: to cooperate or not with
the opponent. If both players cooperate they are rewarded by
R points each; if both defect, they are punished by P points
each. If one cooperates while the other defects, the coopera-
tor gets the sucker tax (S) and the defector gets T points for the
temptation to defect. By definition in the prisoner’s dilemma,
T > R > P > S and 2R > T [5]. Thus when two opponents
meet for a single confrontation it is always better to defect:
each gets at least the same amount of points as his opponent
T > S or P = P. The possibility of cooperation emerges for
rational players if they can meet again with a nonzero prob-
ability; this scenario is called the iterated prisoner’s dilemma
(IPD). The IPD also includes the case where the number of
encounters is finite and known between two players, but we
do not consider this case in this study. In the IPD, the bet-
ter strategy is not trivial anymore, and cooperation among
players can emerge. The IPD has been used to model the evo-
lution of cooperation in populations of fish (sticklebacks) [6],

vampire bats [7], and primates [8, 9]. Even if the rules of the
game are simple, the dynamics generated by different strate-
gies in different environments (how players meet each other,
the numerical values of the payoff) is complex.

Tit-For-Tat is a classical strategy in the iterated prisoner’s
dilemma: it cooperates on the first move and then does what
the opponent did during the previous move. This strategy
won the two numerical tournaments organized by Axelrod
[5] where people (academic and non academic) were invited
to submit strategies of the IPD game. Tit-For-Tat is not the
final state, a generous variation, Generous Tit-for-Tat (GTFT),
which cooperates one time out of three after the opponent
defects, performs well in a noisy environment (when misper-
ception and misimplementation of decisions are probable,
i.e., for stochastic strategies) [10]. TFT and GTFT are reac-
tive strategies; they make their decisions as a function of the
opponent’s previous move; other types of strategies include
general strategies that base their decision on their previ-
ous reward and memoryless strategies that take nothing into
account when making a decision. Pavlov, a general strategy,
outperforms Tif-for-Tat [11]. Pavlov keeps the same decision
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FIGURE 2

Boxplots of simulation characteristics as a function of the rewiring probability for reactive strategies. Fifty percent of the simulations fall within the vertical
box. The median is represented by the horizontal line inside the box. (A) mean score, (B) position of the emergent score, (C) �tot of the emergent score, (D)
position of the emergent p, (E) �tot of the emergent p, (F) position of the emergent q , and (G) �tot of the emergent q .

(cooperate or defect) as long as it pays (reward is T or R) and
switches otherwise.

The model can be extended to a spatial version where the
game is played on an n × n chessboard. In this case, each
player occupies a square on the chessboard and the game is
played between nearest neighbors. At the end of each game,
each player adopts the best scoring strategy in its neighbor-
hood for the next game. The introduction of space changes
the dynamics of the game: coexistence of some strategies
becomes possible and the best strategies in the spatial context
are not the same for the same parameters in the nonspa-
tial version. Simple strategies of the prisoner’s dilemma that
always cooperate (ALLC) and always defect (ALLD) create
beautiful fractals when they coexist [12]. GTFT is more gen-
erous in a spatial environment; it cooperates twice as often
when the opponent defects [13].

The discovery that space can have important effects on the
dynamics of the model has led to a series of studies exploring
the role of population structure on the emergence of coopera-
tion in the prisoner’s dilemma. The difference between struc-
tured populations (grid configuration as per a chessboard)

and random networks, where all players have the same num-
ber of neighbors, for general stochastic strategies of the IPD
is that the average score is higher in spatially structured pop-
ulations because the grid allows clusters of cooperators to
emerge and stabilize the population [14]. Clustered neigh-
borhoods and persistent random networks can also allow
cooperation to emerge with reactive stochastic strategies [15].
Clusters therefore have an important impact on the dynamics
of the game.

The role of clusters on the dynamics of small-world net-
works was first explored by Watts and Strogatz [1] with their
study of the region between structured and random popu-
lations. They showed in the context where the population is
only composed of fully cooperative (ALLC) or fully defective
(ALLD) strategies that the fraction of cooperators decreases
as the amount of randomness introduced in the graph (ρ)

increases. These observations were confirmed in [16], where
they looked at the fractions of ALLC and ALLD that emerge
under different values of T (temptation of defection) and ρ

(rewiring probability). They found that the fraction of ALLC
decreases when ρ or T increases. The score, in particular the
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FIGURE 3

Probability distribution function (PDF) of the score (A) and p (B) for the entire population of memoryless strategies cumulated over a simulation with ρ = 0.1.

temptation to defect (T ), was shown to have a major effect on
the fraction of ALLC for different values of ρ.

To investigate the role of hubs in complex networks, an
“influential node” was added to a small-world networks of
ALLC and ALLD [17]. The “influential node” is a node, taken
at random in the network, to which additional directed links
are added. These links have an effect on a large fraction of
the population, but not the inverse. This type of node cre-
ates an instability in the system, having a great effect when
it switches strategy from ALLC to ALLD. When the influen-
tial node flips to noncooperation, the fraction of cooperators
in the population decreases significantly [17]. This shows

that in addition to the network structure, the characteristics
of a single node can affect the dynamics of the whole
system.

In this study, the evolution of stochastic strategies in the
prisoner’s dilemma played on small-world networks will be
analyzed to identify the effect of the randomness (ρ) and
individual node characteristics (clustering coefficient, sum of
euclidean distances) on the dynamics of each node (strategies
and score).

Although previous studies have concentrated on macro-
scopic characteristics of networks and associated them to
the average score or the presence or absence of certain

FIGURE 4

Probability distribution function (PDF) of the score (A), p (B), and q (C) for the entire population of reactive strategies cumulated over a simulation with ρ = 0.1.
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FIGURE 5

Time evolution of a representative simulation with memoryless strategies at ρ = 0.1. (A) Evolution of the overall population mean score compared with the
emergent score. (B) Evolution of the overall population mean p compared with the emergent p. (C) Evolution of the fraction of the population in the emergent
score. (D) Evolution of the fraction of the population in the emergent p.

strategies in the population, in this study, we monitor the
whole population in a steady state to see the influence
of the characteristics of each individual node (clustering
coefficient and sum of euclidean distance) on the model.
We look at the score (phenotype) given by different sto-
chastic strategies [genotypes: (p) and (p, q)] as a func-
tion of each node characteristic for small-world networks
with different degrees of randomness (ρ). We observe a
marked difference in behaviors between nodes that remain
in the highly clustered grid configuration and those that
are randomly rewired, suggesting that small-world struc-
ture does not affect the dynamics of all nodes in a network
uniformly.

2. THE MODEL
In this study we used a 32 × 32 grid with periodic boundary
conditions to explore the role of the structure of the network
on the dynamics of the population. The initial network is the
standard grid with a Moore neighborhood (the neighbors of
a node are all nodes accessible by the king’s move on a chess-
board); every node is also linked to itself. We then modify the
network with the rewiring process of [1] for different proba-
bilities (ρ = {0, 0.01, 0.02, . . . , 0.12}). The network structure is
constant during a given simulation.

Every node on the graph has a stochastic strategy of the
prisoner’s dilemma game. Two different types of strategies
are studied here: strategies without memory and reactive
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FIGURE 6

Time evolution of a representative simulation with reactive strategies at ρ = 0.1. (A) Evolution of the overall population mean score compared with the
emergent score. (B) Evolution of the overall population mean p compared with the emergent p. (C) Evolution of the overall population mean q compared with
the emergent q . (D) Evolution of the fraction of the population in the emergent score. (E) Evolution of the fraction of the population in the emergent p. (F)
Evolution of the fraction of the population in the emergent q .

strategies. The strategy without memory is a number (p) that
represents the probability of cooperation at every moment.
The reactive strategies are represented by two numbers: the
first (p) represents the probability of cooperation after the
opponent cooperates; the second (q) represents the prob-
ability of cooperation after the opponent defects. To avoid
error-free strategies, the probability of cooperation is exclu-
sively between 0 and 1, such that every probability (p or q) is
restricted to (ε, 1 − ε), where ε > 0 is small. We use the same
payoff function as [5]: (S, P, R, T ) = (0, 1, 3, 5). Each simula-
tion is initialized with a population in which all p and q are
uniformly distributed random numbers between zero and
one exclusively.

The genotype is the strategy of a node (p) or (p, q), and
the phenotype is the genotype’s average score per decision
(payoff) resulting from confrontations with all the strategies
in its neighborhood.

Every round, each strategy effectively plays an infinite
number of iterations against all the strategies that are linked
to it (its neighbors). After the end of each round, every

TABLE 1

Similarity Between Grid and Non-Grid Configurations

Without memory Reactive

Grid vs. Grid vs. Two time Grid vs. Grid vs. Two time
nongrid grid steps nongrid grid steps

Score 1% 31% 14% 2% 29% 14%
p 20% 80% 53% 12% 76% 48%
q — — — 40% 87% 71%

The average fraction of time after the transient period that the two

PDFs are the same with a Kolmogorov-Smirnov test with an interval of

confidence of 95%. The grid-grid comparison is between two succes-

sive time steps of the nodes that are still in a grid configuration in a

simulation. These are the cumulative results for all simulations.
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FIGURE 7

Neighborhood of a node in a standard grid configuration. The nodes
linked by a dashed line with node i are in its Moore neighborhood.
Neighbors to the north, south, east, and west are 1 unit of distance
from node i and the other neighbors are at a distance of

√
2 units. The

solid lines are the links between the neighbors of node i .

node adopts the strategy in its neighborhood that obtained
the best average score per decision. This update is done
simultaneously over the whole network.

To avoid convergence and mitigate the effects of the initial
conditions, there is a small probability of mutation (0.002
per gene: p and q) that is constant during the simulation.
The mutation operation changes the value of the gene to a
random number on the range (ε, 1−ε) and is performed after
the nodes are updated.

Simulations were run for 1000 iterations (round) and 30
replicates were done for each simulation. Although the sys-
tem usually takes about 20 iterations to reach the steady
state, all the analyses are done with the last 900 iterations to
fully eliminate the transient period at the beginning of each
simulation.

3. RESULTS
3.1. Analysis of Phenotypes
The overall mean score (sum of all scores per decision divided
by the number of nodes) decreases as the rewiring probabil-
ity (ρ) increases for both reactive and memoryless strategies
[Figs. 1(A) and 2(A)] as [1], [3], and [16] observed, suggesting
that cooperation decreases in small-world networks. How-
ever, a study of the frequency distribution of scores clearly
shows that distribution is not normal [Figs. 3(A) and 4(A)];
the mean score is neither the median, nor the first moment.
In all simulations, a prominent bin containing a large fraction
of the population is present in the histogram. This bin is never
equivalent to the mean score and, unlike the mean score, its

position remains stable throughout a simulation [Figs. 5(A)
and 6(A)]. We call this bin the “emergent score.” The mean
score varies in synchronization with the the fraction of the
population in the emergent score because the mean score
is highly influenced by the fraction of the population in the
emergent score [Figs. 5(C) and 6(D)].

The position of the emergent score as a function of the
rewiring probability (ρ) is constant over all simulations and
represents random behavior (50% cooperate, 50% defect) ver-
sus random behavior for memoryless strategies [Fig. 1(B)]
and mutual cooperation for reactive strategies [Fig. 2(B)].
As the rewiring probability (ρ) increases, the total fraction
of the population over a simulation in the emergent score
[�tot (score)] decreases [Figs. 1(C) and 2(C)] for both types of
simulations. The transition from a grid to a small-world net-
work does not affect the position of the emergent score, but
changes its accessibility.

Is the introduction of randomness in the network creat-
ing different classes of node? Some nodes after the rewiring
remain in a grid configuration: no links that are related to the
node have been added, removed, or modified, and the neigh-
bors are still connected together after the rewiring process.We
compared the score probability distribution function (PDF)
between two successive time steps for the whole PDF and
for nodes in the grid configuration only and between grid
and nongrid configurations for the same time step. We used
a Kolmogorov-Smirnov test for this purpose. Because this is
a dynamic process, we do not expect a full confirmation that
every PDF is from the same distribution. The Kolmogorov-
Smirnov test with 5% error shows that the PDF of the nodes
in the grid configuration is more similar than the PDF of the
whole population. The comparison between grid and non-
grid configurations is accepted only rarely. Table 1 shows the
results in more detail. The dynamics of the phenotypic evo-
lution is thus different for different network characteristics of
the node.

We quantify the difference between nodes in the grid
configuration and modified nodes to study the impact of
these quantities on the performance (score) of nodes. In gen-
eral, the performance of cooperators is enhanced in clusters
because they are more likely to face other cooperators [14].
We look at two quantitative variables associated with network
structure and the cluster phenomena: the individual cluster-
ing coefficient and the sum of distances, to investigate their
relationship with the score.

The individual clustering coefficient (CCi) is a measure
of the correlation in the neighborhood of a node. When its
value is high, neighbors of a node are linked together. It
varies from 0 to 1, where 0 means no neighbors of a node
are linked together and 1 means all neighbors of a node are
linked together. The clustering coefficient (CCi) of vi is

CCi = 2
|(vj , vk)|
n(n − 1)

, (1)
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where |(vj , vk)| is the number of links present in the set of all
edges in the network (E), vj , vk are nodes in the neighborhood
of vi , n is the number of nodes present in the neighborhood
of vi , and [n(n − 1)/2] is the total number of links possible
between the neighbors of vi . This equation holds for undi-
rected edges [3]. The nodes in the grid configuration have
eight neighbors, that have 12 links between them (Fig. 7),
giving a clustering coefficient of

CCi = 2
12
56

= 3
7

. (2)

2D histograms of the score (y axis) and CCi (x axis) contain
all normalized score histograms in the vertical for every CCi .
Frequency is indicated on a gray scale, with darker values
for higher frequencies [Figs. 8(A) and 9(A)]. The horizon-
tal darkest line of the 2D histogram is the emergent score.

The position of the emergent score remains the same for all
CCi [Figs. 8(A) and 9(A) for representative simulation results].
�(score) is the frequency of the 2D histogram at the emergent
score; here �(score) is a function of CCi . �(score) changes
as a function of CCi , [Figs. 8(C) and 9(D) for representative
simulations results]. As the CCi increases �(score) increases,
but it is not a linear or a simple polynomial function [Figs.
8(C) and 9(D)]. We used a linear robust fit to determine the
sign of the slope of the �(score) as a function of the CCi .
The sign of the slope confirms the tendency of the increasing
�(score) as a function of increasing CCi ; more extensive tests
for all simulations and all ρ show that this trend is univer-
sal. In general the mean score of nodes with high CCi will be
higher, not because they score high values, but because they
score well more often. For lower values of CCi there is more
noise in the values [Figs. 8(C) and 9(D)]. The increased noise

FIGURE 8

Phenotypic and genotypic variation as a function of the quantitative network characteristics (CCi and SoD) for a representative simulation for memoryless
strategies at ρ = 0.1. In (A), (B), (E), and (F) are 2D histograms with the network characteristic (CCi or SoD) in x and the score or p in y . Frequency of the
y -value is indicated on a gray color scale, with darker values for higher frequencies. The 2D histogram is normalized for the network characteristic (the sum
of all values in a vertical line is one), so comparaison between network characteristics is possible. Not all CCi and SoD are represented, giving some vertical
white areas. The dark horizontal line represents the emergent score or p. In (C), (D), (G) and (H) � of the emergent score or p is shown as a function of the CCi

and SoD.
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FIGURE 9

Phenotypic and genotypic variation as a function of the quantitative network characteristics (CCi and SoD) for a representative simulation for reactive strategies
at ρ = 0.1. In (A), (B), (C), (G), (H) and (I) are 2D histograms with the network characteristic (CCi or SoD) in x and the score, p or q in y . Frequency of the
y -value is indicated on a gray color scale, with darker values for higher frequencies. The 2D histogram is normalized for the network characteristic (the sum
of all values in a vertical line is one), so comparaison between network characteristics is possible. Not all CCi and SoD are represented, giving some vertical
white areas. The dark horizontal line represents the emergent score, p or q . In (D), (F), (F), (J), (K), and (L) � of the emergent score, p or q is shown as a
function of the CCi and SoD.

for highly modified nodes (low CCi), is due to the smaller
amount of nodes who have the same characteristics: one
point on the graph can be the behavior of a single node,
because there are no other nodes who share this network
characteristic.

Another way of characterizing a node is by studying its
geographic location relative to its neighbors. When the net-
work is a modification of a grid, the initial Cartesian position
(before the rewiring process) of the node is used to char-
acterize the geometric distance between the node and its
neighbors.The sum of the geometric distance between a node
and all its neighbors is called the Sum of Distances (hereafter
SoD). In the grid configuration, the sum over all neighbors is
SoD = (4×1)+ (4×21/2) for each node (Fig. 7). If there is one
more link from this node node to another 5 units further, the

SoD will become SoD = 5 + (4 × 1) + (4 × 21/2). In general as
the SoD increase, the CCi decreases for a node.

The position of the emergent score is the same for all SoD,
but the �(score) decreases while the SoD increases, the ten-
dency is shown for representative simulations [Figs. 8(E, G)
and 9(G, J)]. Thus, nodes with geographically close neigh-
bors score well more often than nodes with geographically
far neighbors. The relation between the SoD and �(score) is
also neither linear, nor a simple polynomial, but by evalu-
ating the sign of the slope with the same fitting function
as for the CCi the signs shows that this trend is universal.
For SoD larger than the radius of the initial grid (radius
≈ 24) there is more noise in the results [Figs. 8(G) and 9(J)].
In addition, nodes with SoD bigger than the radius of the
grid must have more than one rewired links, and therefore
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FIGURE 10

The mean fraction of time a node switches on and off the emergent score or p and its associated standard deviation for one representative simulation of
memoryless strategies. The fraction of time a node (A) in the emergent score switches as a function of the CCi , (B) in the emergent p switches as a function
of the CCi , (C) in the emergent score switches as a function of the SoD, and (D) in the emergent p switches as a function of the SoD.

a small CCi , which diminishes the local influence and
correlation.

3.2. Analysis of Genotypes
The same analyses were also done for the genotypes: (p)

for memoryless strategies and (p, q) for reactive strategies.
The frequency distribution of p and q shows that the distri-
butions are not normal, and there is a prominent bin con-
taining a large fraction of the population for every p and
q; these bins will be called the emergent p and emergent
q, respectively [Figs. 3(B) and 4(B, C)]. For the purpose of
simplification, we use the term emergent genotype to des-
ignate both emergent p and emergent q without distinc-
tion if nothing else is stated. For memoryless strategies the
emergent genotype is called emergent p, for reactive strate-
gies, there are two emergent genotypes: emergent p and
emergent q.

Emergent genotypes are different from the mean geno-
types and are more stable in time [Figs. 5(B) and 6(B, C)].
There is a synchronization in the variation of the mean

genotype and the fraction of the population in the emer-
gent genotype(s) [Figs. 5(D) and 6(E, F)], because the mean
genotype(s) are influenced by the fraction of the population
in the emergent genotype. The emergent p for memoryless
strategies is around p = 50%, which represents a coin flip-
ping strategy (50% cooperate, 50% defect; Fig. 1(D)). For the
reactive strategies the emergent p is more cooperative and is
close to 1 [Figure 2(D)], and the reaction to defection by the
opponent, emergent q, is around q = 50% [Figure 2(F)]. As
the rewiring probability (ρ) increases, the fraction of the pop-
ulation in emergent p (�(p), same definition as �(score), but
transposed to p) decreases for memoryless strategies [Figure
1(E)] and reactive strategies [Figure 2(E)]. An interesting fea-
ture of p is the emergence of other emergent genotypes in
both memoryless and reactive strategies, so when a node is
not in the emergent p, it is probably in an other emergent p
and not necessarily in the noisy region around the emergent
p [Figs. 3(B) and 4(B)]. In opposition, the q value is adopted
by almost all the population (40–80%; Figure 2 (G)], and there
is no other emergent q [Figure 4(C)].

© 2007 Wiley Periodicals, Inc.
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FIGURE 11

The mean fraction of time a node switches on and off the emergent score, p or q and its associated standard deviation for one representative simulation of
reactive strategies. The fraction of time a node (A) in the emergent score switches as a function of the CCi , (B) in the emergent p switches as a function of the
CCi , (C) in the emergent q switches as a function of the CCi , (D) in the emergent score switches as a function of the SoD, (E) in the emergent p switches as a
function of the SoD, and (F) in the emergent p switches as a function of the SoD.

There is a difference again if the node is in a “grid configu-
ration” or not. Because the neighbors do not affect the geno-
type during a round, the Kolmogorov-Smirnov test between
the grid configuration and nongrid configuration are more
often accepted (Table 1). There is more similarity again in
the grid vs. grid comparison than the whole PDF for two
time steps, and the grid versus nongrid is accepted less often.
There is thus a difference in the dynamics of the genotype for
different network characteristics of a node.

The value of CCi for nodes also has an effect on �(p) and
�(q) [Figs. 8(B) and 9(B, C)]. For high CCi , nodes are less often
in the emergent p and q. As CCi increases, �(p) and �(q)

decreases [Figs. 8(D) and 9(E)]; this trend is universal for all ρ.
For q a large fraction of the population adopts the emergent
q [Figure 2(G)]. As the CCi increases, �(q) decreases [Figure
9(F)], but it remains high (40%). This tendency is present

for all ρ. Nodes with high CCi tend to be more often in the
emergent genotype.

As the SoD increases, �(p) increases [Figs. 8(F, H) and 9(H,
K)]. The increasing tendency is confirmed for all ρ. For emer-
gent q, the same tendency is observed for all simulations, but
at another range of values, in fact �(q) is higher than the �(p)

[Fig. 9(I, L)]. Nodes with low SoD tend to be in the emergent
genotype more often.

3.3. Strategy Switching
Nodes falling into the emergent score/genotype do not
stay there forever; they switch on and off the emergent
score/genotype. The fraction of time a node switches in and
out of the score/genotype is an indirect measure of how long
it can keep the emergent score/genotype. There is no clear
tendency between the fraction of time a node switches on
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FIGURE 12

Spatial configuration of the network at one time step for representative simulations with memoryless strategies for various rewiring probabilities (ρ). Nodes
in black are part of the emergent score (top row) or emergent p (bottom row).

and off the emergent score and the network characteristics
CCi and SoD, because the score of a strategy is determined
by its own genotype and the genotype of all its neighbors
[Figures 10(A, C) and 11(A, D)]. There are more factors that
influence the fraction of time a node switches on and off the
emergent score than for the fraction of time a node switches
on and off the emergent genotype. In contrast, a node will
switch its behavior only if a neighbor performs better than
it (we neglect the mutation that occurs only rarely). As the
CCi increases, the fraction of time nodes switch on and off
the emergent genotype(s) decreases [Figures 10(B) and 11(B,
C)]. In opposition, as the SoD increases the fraction of time,
they switch increases [Figs. 10(D) and 11(E, F)]. More exten-
sive tests for all simulations and all ρ show that this trend is
universal. Rewired nodes are thus more likely than nodes in
the grid to switch on and off the emergent genotype. For low
CCi and high SoD there is more noise in the results.

3.4. Spatial Analysis
To visualize the system, we plot the nodes in their initial
Cartesian positions, not as a function of their links after
the rewiring process. Because small-world networks main-
tain strong local interactions, this “relaxed network” is a good
2D representation of the network (Figs. 12 and 13).

The fraction of the population in the emergent
score/genotype at a given time can be calculated as the
total area occupied by the emergent score/genotype. On the
“relaxed network,” we can measure the perimeter associated
with the area.We consider all nodes as one unit squares, so the

perimeter of a node is four units (north, south, east, and west).
Only edges between a node in the emergent score/genotype
and one outside it count in the calculation of the perimeter
of the emergent area.

As seen before, as the rewiring probability (ρ) increases the
fraction of the population in the emergent score/genotype
decreases. In other terms, the area of nodes in the emer-
gent score/genotype decreases. In Figures 12 and 13 we see
more and more fragmentation as ρ increases. To measure this
fragmentation, we used the perimeter over area ratio of the
nodes in the emergent score/genotype. The plot of the total
perimeter over the total area at each time step for nodes in the
emergent score/genotype increases as the rewiring probabil-
ity (ρ) increases (Figs. 14 and 15). There are still identifiable
clusters in the small-world network, because a strong local
correlation remains. As ρ increases the mean perimeter of
nodes in the relaxed network increases, because the clusters
are more fragmented.

4. DISCUSSION AND CONCLUSION
The mean performance of the population decreases with the
rewiring probability (ρ), but this apparent change in overall
performance is not caused by a drift of the whole popula-
tion to another state. In fact, fraction of the population in
the emergent score is decreasing while the ρ is increasing.
Although the rewiring affects only a small fraction of the
population, macroscopic measures like the mean score are
affected.
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FIGURE 13

Spatial configuration of the network at one time step for representative simulations with reactive strategies for various rewiring probabilities (ρ). Nodes in
black are part of the emergent score (top row), emergent p (middle row), and emergent q (bottom row).

Nodes with different network characteristics behave dif-
ferently. Nodes that keep their original grid configuration
usually perform well more often than those that are highly
modified (low CCi and high SoD), even if highly modified
nodes are more often in the emergent genotype(s). Highly
modified nodes are more often in the emergent genotype(s)
because they switch on and off of it more often: they are less
able to stay in the emergent genotype(s) and perform well
enough to stay there.

Explanation of decreased overall cooperation requires
more than a simple study of the presence or absence of clus-
ters in a network [14, 15] and of nodes in or out of clusters.
There are different levels of clustering that can be quantified
by the CCi and SoD. The CCi is a good measure for highly cor-
related clusters (a lot of neighbors from a node are neighbors
together). For networks containing nodes with low CCi , like a
von Neumann grid (neighbors of a node are the four closest
nodes: north, south, east, and west) for which CCi = 0 for
all nodes, this measure is not useful. Even after the rewiring
process, in which CCi usually decreases, here CCi is already
at the lower bound. In contrast, the SoD is still a good mea-
sure for low and even zero CCi , because SoD will not be zero

unless the node is isolated. This measure, which considers
spatial proximity on a network, is thus a very useful method of
characterizing the local structure of less-connected networks.

Every node in the network tries to maximize its score. To
acheive this, a node adopts the most effective strategy it is in
contact with. The optimal strategy of a node might depend on
its network characteristic. Because all nodes do not have the
same network characteristics, there are multiple optimiza-
tion processes running at the same time and interacting with
each other. The interactions cause interference, because they
share information about potentially different problems and
try to use this information on another problem. The group
with the largest number of members contains the nodes in
the grid configuration, so there is more information in the
network about how to optimize nodes in a grid configura-
tion. Members of other groups will use this information and
fail to improve their score with it, so they switch strategies
more often.

The presence of rewired nodes creates instabilities on the
network; they keep changing strategy over and over, so their
neighbors have a hard time adapting their strategies as a
function of this highly variable neighbor. These instabilities
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FIGURE 14

The mean and standard deviation of the ratio of the perimeter of the emergent zone (the black in Figure 12) over the area of the emergent zone for each time
step for simulations with memoryless strategies as a function of the rewiring probability (ρ). The ratio for (A) the emergent score and (B) the emergent p.

create more fragmentation in the network, because rewired
nodes have neighbors in different regions of the grid who
are influenced by their changing strategies, such that these
instabilities have an effect on noncontiguous regions of the
grid.

If there is less cooperation in a small-world network than
on a grid, why would small-world structure emerge in social
cooperation networks such as networks of scientists? In this
study we use the mean score per decision to compare nodes
and update their strategies as a function of it. In the real world

it is the cumulative score of an individual that matters, not the
mean score per decision. Because rewired nodes are more
likely to have more neighbors, they have more oportunities
to score and thus increase their cumulative score. Another
dilemma arises: is it better to have more neighbors and score
below the emergent score or to have the standard number of
neighbors and score the emergent score, which is usually one
of the best scores achieved in the population, more often? We
speculate that it’s better to have more neighbors. The pris-
oner’s dilemma can be viewed as a cost and benefit situation.

FIGURE 15

The mean and standard deviation of the ratio of the perimeter of i the emergent zone (the black in Figure 13) over the area of the emergent zone for each time
step for simulations with memoryless strategies as a function of the rewiring probability (ρ). The ratio for (A) the emergent score, (B) the emergent p, and (C)
the emergent q .
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Cooperators pay the cost c and the opponents get the benefit
b, defectors do not pay the cost. If two nodes cooperate, they
each pay the cost c and gets the benefits b; if both defect,
nobody pays the cost, so there is no benefit; if one coop-
erates while the other defects, the cooperator pays the cost
while the defector gets the benefit b. If b > c > 0 the pris-
oner’s dilemma equality is respected [18]. In real networks,
there is a limit to the number of neighbors that a node can
have because there is a cost to create and maintain a cooper-
ative link. In collaboration networks of scientists, the limited
amount of time available is probably the main limitation
for the maintenance and the expansion of the network. On
the other hand, geographical proximity promote cooperation
between scientists [19]; even if communication tools facilitate
long distance cooperation [20], those technologies increase
group separation between academic economists [21]. Phys-
ical distance still play an important role in this particular
network.

In summary, the migration from a regular grid to a small-
world network does not modify the strategies that are present.
As the rewiring probability increases, �(score/genotype)

decreases, revealing that the fraction of the population in
the emergent score/genotype decreases. Because the emer-
gent score is usually one of the best, if not the best, score
that is acheived in the population, if �(score) decreases,
the overall mean score of the population decreases as
ρ increases. Highly modified nodes will switch strategies
more often, creating instabilities and fragmentation on the
network.
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