# 6 1+1 2*7/8-9 pi log(e) log(exp(1)) log10(1000) sin(2*pi) 2^10 sqrt(81) # 7 1:10 seq(from=1,to=10,by=1) x<-1:10 y<-11:20 x+y x*y x^2 x<-rnorn(10) sort(x) # 8 matrix(1:16,4,4) x<-matrix(1:16,4,4) y<-0.5 x+y 1:4 %*% x #page 9 x<-1:10 plot(x,x^2) hist(rnorm(3000)) image(matrix(1:16,4,4)) #install.packages("fields") library(fields) image.plot(matrix(1:16,4,4)) #14 rm(list=ls()) # 21 myData<-read.csv("compensation.csv") dim(myData) names(myData) str(myData) summary(myData) #26 myData$Root myData$Fruit myData$Grazing #27 myData[1,1] myData[5,1] myData[1,2] #28 myData$Root myData$root myData[,1] myData[,"Root"] #---------------Tables--------------------------- #32 ?aggregate #35 aggregate(myData$Fruit,myData$Grazing,mean) #37 aggregate(myData$Fruit,list(myData$Grazing),mean) #38 aggregate(myData$Fruit,list(Grazing=myData$Grazing),mean) #40 aggregate(x=myData$Fruit,by=list(Grazing=myData$Grazing),FUN=mean) aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=mean) #41 aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=length) aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=mean) aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=sd) #42 n.fruit<-aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=length) mean.fruit<-aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=mean) sd.fruit<-aggregate(x=myData$Fruit, by=list(Grazing=myData$Grazing), FUN=sd) summary.table<-cbind(n.fruit[,2],mean.fruit[,2],sd.fruit[,2]) summary.table #43 dimnames(summary.table)<-list(n.fruit[,1],c("n","mean","SD")) summary.table #44 rm(list=ls()) #setwd("") #myData<-read.csv("growth.csv) myData<-read.csv("growth.csv") head(myData) str(myData) #45 mean.gain<-aggregate(x=myData$gain, by=list(myData$supplement,myData$diet), FUN=mean) mean.gain #46 mean.gain<-tapply(myData$gain, list(myData$supplement,myData$diet), mean) mean.gain class(mean.gain) #------------Graph----------------- #49 myData<-read.csv("compensation.csv") n.fruit<-tapply(myData$Fruit, list(myData$Grazing), length) mean.fruit<-tapply(myData$Fruit, list(Grazing=myData$Grazing), mean) sd.fruit<-tapply(myData$Fruit, list(Grazing=myData$Grazing), sd) #50 barplot(mean.fruit) #52 barplot(mean.fruit, xlab="Treatment", ylab="Fruit production") #53 barplot(mean.fruit, xlab="Treatment", ylab="Fruit production", ylim=c(0,100)) #54 mids<- barplot(mean.fruit, xlab="Treatment", ylab="Fruit production", ylim=c(0,100)) arrows(mids, mean.fruit+sd.fruit, mids, mean.fruit-sd.fruit) #56 mids<- barplot(mean.fruit, xlab="Treatment", ylab="Fruit production", ylim=c(0,100)) arrows(mids, mean.fruit+sd.fruit, mids, mean.fruit-sd.fruit, angle=90) #57 #help(arrows) mids<- barplot(mean.fruit, xlab="Treatment", ylab="Fruit production", ylim=c(0,100)) arrows(mids, mean.fruit+sd.fruit, mids, mean.fruit-sd.fruit, angle=90, code=3) #57 mids<- barplot(mean.fruit, xlab="Treatment", ylab="Fruit production", ylim=c(0,100)) arrows(mids, mean.fruit+sd.fruit, mids, mean.fruit-sd.fruit, angle=90, code=3) text(mids,5,paste("N= ",n.fruit)) #59 myData<-read.csv("growth.csv") mean.gain<-tapply(myData$gain, list(myData$supplement,myData$diet), mean) mean.gain class(mean.gain) sd.gain<-tapply(myData$gain, list(myData$supplement,myData$diet), sd) n.gain<-tapply(myData$gain, list(myData$supplement,myData$diet), length) #60 barplot(mean.gain) #help(barplot) barplot(mean.gain,beside=T) #61 rownames(mean.gain) colnames(mean.gain) #62 mids<- barplot(mean.gain,beside=T, xlab="Feed type", ylab="Weight gain", ylim=c(0,35), col=grey(c(0,0.3,0.6,1))) arrows(mids, mean.gain+sd.gain, mids, mean.gain-sd.gain, angle=90, code=3) mids<- barplot(mean.gain,beside=T, xlab="Feed type", ylab="Weight gain", ylim=c(0,35), col=grey(c(0,0.3,0.6,1))) arrows(mids, mean.gain+sd.gain, mids, mean.gain-sd.gain, angle=90, code=3, length=0.1) text(mids,2,paste(n.gain)) text(mids,2,paste(n.gain),col=c("white",rep("black",3))) legend("topright",legend=rownames(mean.gain),fill=grey(c(0,0.3,0.6,1))) pdf(filename.pdf) #code dev.off() #64 myData<-read.csv("compensation.csv") plot(myData$Root,myData$Fruit) plot(myData$Fruit~myData$Root) #65 plot(myData$Root,myData$Fruit, xlab="Root stock width", ylab="Fruit production") #66 plot(myData$Root,myData$Fruit, xlab="Root stock width", ylab="Fruit production", pch=21,bg="grey",cex=2) plot(1:25,pch=1:25) plot(1:25,col=1:25) #67 culr <- ifelse(myData$Grazing == "Grazed", "Green", "Blue") plot(myData$Root,myData$Fruit, xlab="Root stock width", ylab="Fruit production", pch=21,bg=culr,cex=2) #68 culr <- ifelse(myData$Grazing == "Grazed", "Green", "Blue") plot(myData$Root,myData$Fruit, xlab="Root stock width", ylab="Fruit production", pch=21,bg=culr,cex=2) legend("topleft", legend=c("Grazed","Ungrazed"), pch=21, pt.bg=c("Green","Blue"), pt.cex=2) # 69 plot(myData$Root,myData$Fruit) plot(myData$Grazing,myData$Fruit) str(myData$Root) str(myData$Grazing)