#q() #quit() a <- 1 a=1 1 -> a b <-c(1,2,3) a <- array(NA,dim=10) a[4] <- 5 b <- matrix(NA,ncol=10,nrow=30) b[30,3]<-1 #help(array) #help(matrix)} a<-array(seq(1,10,2)) a<-array(rnorm(10,mean=15,sd=3)) b<-matrix(seq(1,20),ncol=2,nrow=10) b<-matrix(runif(21),ncol=3,nrow=7) c<-c(rnorm(5000,mean=10,sd=4), rnorm(5000,mean=15,sd=4)) a+a a+5 1+b 5*a a*a #a*b b*b a-a a-5 a/2 x<-read.csv("hendryetAl.csv") length(x[,1]) length(x[1,]) x$Years x[,18] # x$years x<-read.csv("hendryetAl.csv") hist(x$Haldanes) hist(x$Haldanes,breaks=100) # hist(..., breaks=seq(from=-1.2,to=0.8,by=0.1)) # hist(...,col=2) # hist(...,border=3) shapiro.test(x$Haldanes) ks.test(x$Haldanes,"pnorm", mean=mean(x$Haldanes,na.rm=T), sd=sd(x$Haldanes,na.rm=T)) mydata<-read.csv("fruits.csv") str(mydata) # help(aggregate) aggregate(mydata$Fruit, list(mydata$Manger), mean) aggregate(mydata$Fruit, list(Manger=mydata$Manger), mean) aggregate(x=mydata$Fruit, by=list(Manger=mydata$Manger), FUN=mean) # aggregate(mydata$Fruit, mydata$Manger, mean) n.fruit <- aggregate(mydata$Fruit, list(Manger=mydata$Manger), length) mean.fruit <- aggregate(mydata$Fruit, list(Manger=mydata$Manger), mean) sd.fruit <- aggregate(mydata$Fruit, list(Manger=mydata$Manger), sd) summary.table <- cbind(n.fruit[,2], mean.fruit[,2], sd.fruit[,2]) summary.table dimnames(summary.table) <- list(n.fruit[,1], c("n","mean","SD")) mydata<-read.csv("croissance.csv") str(mydata) aggregate(mydata$gain, list(mydata$supplement,mydata$diete), mean) mean.gain<-tapply(mydata$gain, list(mydata$supplement,mydata$diete), mean) mydata<-read.csv("fruits.csv") n.fruit <- tapply(mydata$Fruit, list(Manger=mydata$Manger), length) mean.fruit <- tapply(mydata$Fruit, list(Manger=mydata$Manger), mean) sd.fruit <- tapply(mydata$Fruit, list(Manger=mydata$Manger), sd) barplot(mean.fruit) # help(barplot)} barplot(mean.fruit, xlab="Traitement", ylab="Production de fruit", ylim=c(0,100)) mids<-barplot(mean.fruit, xlab="Traitement", ylab="Production de fruit" , ylim=c(0,100)) arrows(mids,mean.fruit+sd.fruit, mids, mean.fruit - sd.fruit) # help(arrows) mids<-barplot(mean.fruit, xlab="Traitement", ylab="Production de fruit" , ylim=c(0,100)) arrows(mids,mean.fruit+sd.fruit, mids, mean.fruit - sd.fruit, angle=90, code=3) text(mids,5, paste("N = ", n.fruit)) myData<-read.csv("croissance.csv") mean.gain<-tapply(myData$gain, list(myData$supplement,myData$diete), mean) sd.gain<-tapply(myData$gain, list(myData$supplement,myData$diete), sd) n.gain<-tapply(myData$gain, list(myData$supplement,myData$diete), length) barplot(mean.gain) mids<- barplot(mean.gain,beside=T, xlab="Type nourriture", ylab="Gain", ylim=c(0,35), col=grey(c(0,0.3,0.6,1))) arrows(mids, mean.gain+sd.gain, mids, mean.gain-sd.gain, angle=90, code=3, length=0.1) text(mids, 2, paste(n.gain), col=c("white", rep("black",3))) legend("topright", legend=rownames(mean.gain), fill=grey(c(0,0.3,0.6,1))) mydata<-read.csv("fruits.csv") plot(mydata$Racine, mydata$Fruit) plot(mydata$Racine, mydata$Fruit, xlab="Largeur des racines", ylab="Production de fruit") plot(mydata$Racine, mydata$Fruit, xlab="Largeur des racines", ylab="Production de fruit", pch=21,bg="grey",cex=2.0) clr<-ifelse(mydata$Manger == "Mange", "Green","Blue") plot(mydata$Racine, mydata$Fruit, xlab="Largeur des racines", ylab="Production de fruit" , pch=21,bg=clr,cex=2.0) legend("topleft", legend=c("Mange", "Intact"), pch=21, pt.bg=c("Green", "Blue"), pt.cex=2.0) # plot(..., main="Titre") # plot(..., xlab="nomX",ylab="nomY") # plot(..., cex=2.0) # plot(..., cex.lab=2.0) # plot(..., cex.axis=2.0) # plot(..., xlim=c(0,100),ylim=c(0,2)) points(x=5,y=80) # points(...,pch=2) # points(..., col=2) # points(..., cex=2.0) # points(x=c(1,2,3),y=c(1,2,3)) # lines(x=c(x1,x2),y=c(y1,y2)) lines(x=c(5,10),y=c(100,20)) # lines(...,lty=2) # lines(..., col=2) # lines(..., lwd=2.0) # lines(x=c(x1,x2,x3),y=c(y1,y2,y3)) # jpeg("fileName.jpg") # plot(...) # dev.off() # help(jpeg) x<-read.csv("hendryetAl.csv") x$Years x$Years>100 x$Years==111 x$Years!=124 cond<-x$Years>100 x$Years[cond] x$Haldanes[cond] x$Haldanes[x$Years>100] cond<-x$Years>100 & x$Years<113 cond<-x$Years<100 | x$Years>113 cond<-x$Years>100 & x$Haldanes>=0 x$Years[cond] x$Haldanes[cond] # save(x,y,z,file="saveXYZ.RData") # save.image(file="workspace.RData") # load("saveXYZ.RData") # load("workspace.RData") ls() my.lm<-lm(x$Haldanes~ x$GLength) summary(lm(x$Haldanes~ x$GLength)) summary(my.lm) attributes(my.lm) my.lm$residuals my.lm$coefficients my.summ.lm<-summary(my.lm) attributes(my.summ.lm) my.summ.lm$r.squared my.summ.lm$fstatistic plot(x$Haldanes~ x$GLength) plot(x$GLength,x$Haldanes) lm(x$HaldanesAbs~ x$GLength) summary(lm(x$HaldanesAbs~ x$GLength)) plot(x$HaldanesAbs~ x$GLength) help.search("regression") # install.packages() library(car) #help(reg.line) rg<-x$HaldanesAbs~ x$GLength plot(rg,xlab="Glength",ylab="Absolute Haldanes") reg.line(lm(rg)) m1<- x$HaldanesAbs~ x$GLength+x$Years m2<- x$HaldanesAbs~ x$GLength:x$Years m3<- x$HaldanesAbs~ x$GLength*x$Years m3<- x$HaldanesAbs~ x$GLength + x$Years + x$GLength:x$Years z<-read.table("anova.txt") names(z) <- c("response", "category", "replicat", "coVar") attach(z) response detach(z) response attach(z) category<-factor(category) mod1<-response~ category boxplot(mod1) mod1.lm<-lm(mod1) plot(mod1.lm) summary(mod1.lm) anova(mod1.lm) # ANCOVA as.factor(category) plot(response ~ coVar,pch=as.numeric(category)) ResFull<-response ~ category+ coVar + category:coVar ResCD<-response ~ category+ coVar ResE<-response ~ coVar ResFull.lm<-lm(ResFull) ResCD.lm<-lm(ResCD) ResE.lm<-lm(ResE) plot(ResFull.lm) plot(ResCD.lm) plot(ResE.lm) summary(ResFull.lm) summary(ResCD.lm) summary(ResE.lm) anova(ResFull.lm, ResE.lm) anova(ResFull.lm, ResCD.lm, ResE.lm) tapply(response, category, var, na.rm=TRUE) tapply(response, category, function(x) shapiro.test(x)) # Fibonacci x<- array(1,dim=10) for (i in seq(3,length(x))) { x[i]<-x[i-1]+x[i-2] } x<- array(1,dim=10) i<-3 while (i <= length(x)) { x[i]<-x[i-1]+x[i-2] i<-i+1 } x<-25 if (x>0) { x<-x+1 } else { x<-x-1 } x<-array(dim=1000) x[1]=0.5 r<-3.7 for (t in 2:length(x)){ x[t]<-r*x[t-1]*(1-x[t-1]) } chaos <- function(time,r,popS){ x<-array(dim=time) x[1]=popS for (t in 2:length(x)){ x[t]<-r*x[t-1]*(1-x[t-1]) } return(x) } chaos(1000,3.5,0.5) c<-chaos(1000,3.5,0.5) plot(c) plot(chaos(1000,3.5,0.5)) mySum <- function(N){ return(sum(seq(1,N))) } mySum2 <- function(N){ return((N*(N+1))/2) } V1 <- as.vector(seq(1,10)) V2 <- as.vector(rnorm(10)) V3<- V1 * V2 s1<- t(V1) %*% V2 M1<- V1 %*% t(V2) M3 <- matrix(c(1,2,3,4,5,6),ncol=3,nrow=2) M1 <- matrix(c(1,2,3,4,5,6), ncol=3, nrow=2) V1 <- as.vector(c(7,8,9)) M1 %*% V1 # V1 %*% M1 M1 <- matrix(c(1,2,3,4,5,6), ncol=3, nrow=2) M2 <- matrix(c(7,8,9,10,11,12), ncol=2, nrow=3) M1 %*% M2 # M2 %*% M1 ##################### M1 <- matrix(c(0,0.7,0,1.29,0,0.2,0.702,0,0), ncol=3, nrow=3) V0 <- as.vector(c(1,0,0)) for (i in 1:100){ V1<-M1 %*% V0 V0<-V1 } prop<-V0/sum(V0) ##################### M1 <- matrix(c(0,0.7,0,1.29,0,0.2,0.702,0,0), ncol=3, nrow=3) eigen(M1) ################ prop2<-eigen(M1)$vectors[,1]/sum(eigen(M1)$vectors[,1]) ################ M1 <- matrix(c(0,0.7,0,1.29,0,0.2,0.702,0,0), ncol=3, nrow=3) inv(M1) # (fait partie du paquet {\it car}) M1 %*% inv(M1) det(M1) diag(M1) # install.packages("deSolve") library(deSolve) parameters<-c(r=1.5,K=100) state<-c(X=80) logistic <- function(t, state, parameters){ with(as.list(c(state, parameters)), { dX=r*X*(K-X)/K return(list(dX)) }) } times <- seq(1,100,by=0.1) out <- as.data.frame(ode(y=state, times=times, func=logistic, parms=parameters)) plot(out$X) parameters<-c(b=1.0, d=0.2, beta=0.1, gamma=0.7, D=0.3) state<-c(X=15, Y=4, Z=0) SIR<- function(t,state,parameters){ with(as.list(c(state,parameters)),{ dX = b*(d*X+D*Y+d*Z) - beta*X*Y - d*X dY = beta*X*Y - (D+gamma)*Y dZ = gamma*Y -d*Z return(list(c(dX,dY,dZ))) }) } times<- seq(1,100,by=1) out<-as.data.frame(ode(y=state,times=times, func=SIR,parms=parameters)) par(mfrow=c(2,2), oma=c(0,0,3,0)) plot(times,out$X, type="l", main="Susceptible", xlab="time", ylab="-") plot(times,out$Y, type="l", main="Infecte", xlab="time", ylab="-") plot(times,out$Z, type="l", main="Gueri", xlab="time", ylab="-")